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ABSTRACT 
 
 
 
 

Real–time recursive parameter identification is applied to surface vessel modeling 

for maneuvering path prediction.  An end-to-end system is developed to simulate vessel 

motion, identify vessel parameters and estimate future path.  Path prediction improves 

bridge team situational awareness by providing a real–time depiction of future motion 

over the ground on an electronic chart and display system (ECDIS).  The extended least–

squares (ELS) parameter identification approach allows the system to be installed on 

most platforms without prior knowledge of system dynamics, provided vessel states are 

available.  The system continually tunes to actual environmental conditions, including 

vessel ballasting, current, wind and sensor biases.  In addition to path prediction, the sys-

tem estimates maximum vessel roll angle during maneuvering.  Maximum roll prediction 

enhances carrier flight deck safety and increases operational effectiveness by reducing 

sea room requirements.  Suitable performance is demonstrated in real–world maneuver-

ing conditions to recommend that maneuvering path prediction be incorporated into the 

US Navy’s AN/SSN-6 Navigation Sensor System Interface (NAVSSI) electronic charting 

system.  Future research should emphasize an underway demonstration with real–time 

data acquisition. 
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I. INTRODUCTION  

A. BACKGROUND  

The US Navy is implementing electronic charting and display system (ECDIS) 

capabilities on naval vessels in an effort to eliminate paper charts and reduce bridge team 

manpower requirements.  Due to unique military requirements, the Navy is procuring the 

AN/SSN-6 Navigation Sensor System Interface (NAVSSI) vice commercial off the shelf 

(COTS) technology.  Figure 1.1 provides a basic NAVSSI system schematic.  The system 

capabilities include the graphical depiction of a vessel’s current state (position and veloc-

ity) superimposed on an electronic chart, as well as extensive route planning functional-

ity. 

  

 
Figure 1.1  AN/SSN-6 Navigation Sensor System Interface (NAVSSI) Diagram 
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Although a major improvement over paper charting, NAVSSI also serves as a 

technology inroad for implementing innovative situational awareness enhancements that 

increase safety and further reduce bridge workload.  One enhancement being proposed by 

the author is the estimation and display of future vessel path during maneuvering situa-

tions.  Figure 1.2 illustrates the basic concept.  Instead of displaying an instantaneous in-

ertial velocity vector, an electronic display should also display estimated vessel path over 

the ground, taking into account environmental conditions such as vessel loading, wind 

and current.   

Predicted  
Path 

Instantaneous 
Velocity Vector 

Future 
Position 

(2 minutes)  

Current 
Position

Desired 
Path 

 
Figure 1.2  Sample Electronic Chart Image Illustrating Difference Between Instanta-

neous Velocity Vector and Maneuvering Path Prediction 
 

Path prediction enhances situational awareness, especially on large vessels with 

slow maneuvering time constants (i.e., lag between control input and vessel steady–state 

response).  A single glance at the display allows the Officer of the Deck (OOD) or Com-

manding Officer to confirm whether current engine and helm orders will effect the de-

sired outcome.  Estimated path over the ground proves useful while maneuvering in re-

stricted waters, entering port, negotiating minefields or maneuvering for collision avoid-
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ance.  In addition, maneuvering path prediction provides for the automatic, real–time 

depiction of advance and transfer with current and wind taken into account.  

From 1998 through 2000, the author developed a path prediction concept demon-

strator program called CV Maneuvering Assistant (CV MAST).  Figure 1.3 displays a 

screen snapshot of the CV MAST system simulating an aircraft carrier entering the port 

of Jebel Ali, Dubai.  CV MAST contained a fictitious dynamic model of a four–screw, 

twin–rudder aircraft carrier that provided sufficient fidelity to serve as a concept demon-

stration platform.  Following favorable comments from bridge watch standers, the author 

embarked on the current research effort to further refine the concept of path prediction.  

The primary technical emphasis of this thesis was to develop vessel model structures and 

parameter identification algorithms that provide a real–time, adaptive estimation of the 

vessel model and environmental disturbances.   

 
 

Figure 1.3  CV Maneuvering Assistant Concept Demonstrator  
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An adaptive model reduces the requirement to create and maintain dynamic mod-

els for each class of ship.  The approach presented in this research is to have the NAVSSI 

system identify the dynamic model based on control inputs and observed response.  The 

NAVSSI system is well suited for this function because it already serves as the naviga-

tion data fusion center and arbitrates the vessel state.  An additional software module 

would be added to recursively identify vessel model parameters and predict future path 

taking into account environmental disturbances. 

 
 

B. STATEMENT OF OBJECTIVES 

This research effort had two primary objectives.  The first was to demonstrate 

end-to-end operation of a path prediction system while processing real–world data from a 

maneuvering vessel.  The second primary objective was to investigate vessel model struc-

tures and parameter estimation algorithms for automating the task of maintaining an ac-

curate dynamic model.  Specific objectives included:   

• Identify vessel model structures with sufficient fidelity to provide path prediction 

over a wide range of operating conditions. 

• Develop a stable, parameter estimation algorithm that provides the “core” for the 

dynamic ship’s track estimation.  The model should compensate for changes in 

vessel loading, sensor bias and modeling errors.   

• Simulate and demonstrate vessel path prediction overlaid on an electronic chart. 

• Investigate operational limitations of the selected path prediction system. 

• Investigate whether path prediction has the potential to enhance operational safety 

and effectiveness. 

  

C. SYSTEM OVERVIEW 

A virtual navigation system was designed that simulates vessel motion, estimates 

parameters, predicts future path and displays the information overlaid on an electronic 

chart image.  LabView by National Instruments (NI) was chosen for the overarching 

software platform due to its rich graphical user interface and inherent data acquisition 
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capability.  MatLab is used for function block scripting because the author and most 

technical readers are familiar with MatLab syntax.  Figure 1.4 displays the general flow 

of data through the Data Acquisition, Parameter Identification, Track Prediction and 

Track Display modules.   

 

DATA 
ACQUISITION 

• Vessel Models 
• Sea Trials Data 

PARAMETER 
IDENTIFICATION

• RLS / ELS / RML 
• Exp Forgetting 

TRACK 
PREDICTION 
• Open Loop 

Integration 

TRACK DISPLAY
 

• ECDIS Format 
• Prediction Quality

 

Inputs – u(k) 
 

States –x(k) 

Inputs – u(k)
 

States –x(k) 

Parameters
 

θ(k) 

Estimated 
 

Track 
 

SYSTEM BLOCK DIAGRAM 

 

 Figure 1.4 Overall System Design Block Diagram 

 

As currently implemented, the system compensates for vessel load, current, wind 

and rudder sensor bias.  Figure 1.5 displays an example screen shot of the system while 

processing USCGC HEALY sea trials data.  The developmental system has many con-

trols and indicators that would not be required on an operational display.  

 

D. THESIS OVERVIEW 

 Chapter II provides an overview of surface vessel modeling by discussing coor-

dinate systems, rigid body dynamics, dynamic models and non-dimensional parameteri-

zation.  Chapter III describes the recursive least–squares and extended least–squares pa-

rameter identification techniques used to find the model coefficients.  Chapter IV de-

scribes the overall system design and data flow through the data acquisition, parameter 

identification, track prediction and track display modules.  Results are presented in Chap-

ter V in a build-up approach, culminating with the processing of real–word data from the 

USCGC Healy Performance and Special Sea Trials.  Chapter VI provides conclusions 

and recommendations, including suggestions for future system enhancements. 
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Figure 1.5 Path Prediction System Display  
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II. SURFACE VESSEL MODELING  

Selecting an appropriate dynamic model is critical to achieving desired system 

performance from both the parameter estimation and path prediction algorithms.  Each 

system block shown in Figure 2.1 relies on vessel modeling.  The underlying objective is 

to select the lowest order model that captures adequate maneuvering fidelity.  In this 

chapter and associated appendices, several dynamic models are presented for the purpose 

of generating truth data, parameter estimation and track prediction.   

DATA 
ACQUISITION 

• Vessel Models 
• Sea Trials Data 

PARAMETER 
IDENTIFICATION

• RLS / ELS / RML 
• Exp Forgetting 

TRACK 
PREDICTION 
• Model Open 

Loop Integration 

Inputs – u(k) 
 

States –x(k) 

Inputs – u(k)
 

States –x(k) 

Parameters
 

θ(k) 
 

Figure 2.1 System Blocks Requiring Vessel Math Model 
 

Most references present vessel models in continuous–time.  However, discrete–

time models are more suitable for recursive parameter estimation algorithms.  This thesis 

connects continuous–time models to discrete–time models appropriate for recursive pa-

rameter estimation.   

 

A. COORDINATE SYSTEMS  

A rigid body surface vessel moves around its center of gravity (CG) relative to an 

earth–fixed frame of reference.  For the slow motion of surface vessels, acceleration due 

to earth rotation is negligible.  Thus, the North–East–Down (NED) tangent plane pro-

vides sufficient fidelity for parameter estimation and track prediction.  This assumption 

breaks down close to the north and south poles.  However, surface vessel navigation is 

impracticable at the poles, making the additional overhead of earth–centered, earth–fixed 

calculations unnecessary.   Figure 2.2 displays the body–fixed and NED frames of refer-

ence along with the associated velocity and angle notation used in this research.  All 
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frames of reference are right hand systems.  A positive rotation of the rudder is in the di-

rection that produces a positive yaw rate while the vessel is moving ahead.  

 

 
 
 

           
 
 

Xo

Zo 

Yo 

X 

Z 
Y 

Earth–Fixed Axes 
(NED Tangent Plane) 

Body–Fixed Axes 

ro

φ – roll angle 
p – roll rate 
u – surge velocity
X – x force 
K – roll moment 

θ – pitch angle 
q – pitch rate 
v – sway velocity 
Y – Y force 
M – pitch moment 

ψ – yaw angle 
r – yaw rate 
w – heave velocity 
Z – Z force 
N – yaw moment 

δR 

 
Figure 2.2 Body–Fixed and Earth–Fixed Reference Frames [After Ref. 1.] 

 

B. RIGID–BODY DYNAMICS 

All vessel models used in this research are derived from the rigid body equations 

of motion.  Appendix A contains an overview of the six degree of freedom (6–DOF) 

equations of motion and illustrates how the order may be reduced for vessel parameter 

estimation and path prediction.  

A full 6–DOF model is appropriate in some circumstances, such as modeling the 

outside visual scene for a bridge simulator.  However, simplified models are generally 

used for surface navigation.  In fact, the primary objective of this research is to estimate 

and display future vessel position on an electronic chart display system.  In general, pitch 

and heave motions can be ignored for surface navigation.  By definition, the electronic 

chart is limited to depicting motion in the x–y tangent plane, making a 2–DOF (u, r) or 3–
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DOF (u ,v, r) model appropriate.  However, in some cases it is useful to display roll angle 

information using a 4–DOF (u ,v, p, r) model.  A good example is the estimation and dis-

play of maximum roll angle during aircraft carrier maneuvering.  This could assist the 

Officer of the Deck (OOD) with restricting rudder movement during flight operations to 

prevent aircraft from sliding off the flight deck.  Other vessels with roll angle limitations, 

such as weapon system restrictions, may benefit from roll angle estimation during ma-

neuvering.   

The 6–DOF equations of motion are reduced to 4–DOF and simplified with the 

following assumptions: 

1) Vessel is symmetric around the x–z plane ( 0xy yz GI I y= = = ). 

2) Vessel has a homogeneous mass distribution. 

3) The body fixed origin is selected as [ ]0 T
G G Gr x z=  ( 0xzI = ). 

4) Pitch and heave are ignored ( 0q w= = ). 

The 4–DOF equations of motion are further reduced to 3–DOF by ignoring the 

roll axis ( 0p = ). 

The 3–DOF equations are reduced to 2–DOF by dropping sway motion ( 0v = ). 

 

C. DYNAMIC MODELS 

Appendix B provides an overview of linear and non-linear surface vessel models 

appropriate for recursive parameter estimation.  All the models are based on small pertur-

bation decoupling of the sway–yaw–roll modes from the surge equation.  The general 

goal is to find a model with slowly varying parameters that is valid over a large range of 

operating conditions.  Linear models are preferred; however, recursive parameter estima-

tion can handle non-linear models that are linear in parameters [Ref. 2].  For the inter-

ested reader, Fossen [Ref. 1] provides an excellent compilation of dynamic models for 

both surface and sub-surface vessels.   

The models presented in Appendix B are extendable to multi–shaft and multi–

rudder vessels.  However, simply appending additional inputs to the control vector (e.g., 
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[ ]1 2
T

R R Rδ δ δ= ) does not provide suitable input for parameter estimation.  This is due 

to lack of independent, persistent excitation of the control inputs.  In other words, the 

rudders and shafts are typically operated in tandem.  Heuristically, this means the recur-

sive parameter estimator cannot determine which rudder is providing the control power.  

The method used in this research is to add control inputs assuming linear superposition as 

follows: 

 1 1 2 2 3 3 4 4n n n n n n n n n n= + + +  for multi–shaft vessel (2.1) 

 21 RRR δδδ +=  and 2
2

2
1

2
RRR δδδ +=  for multi–rudder vessels (2.2) 

where n is the shaft speed (RPM) and δR is the rudder deflection. 

This simplification does create limitations.  For instance, summing shaft RPM 

squared for a multi shaft vessel will not allow the parameter estimator to resolve the 

“twisting” effect of differential engine orders.  However, the nice convergence of control 

parameters more than offsets limitations during infrequent, non–tandem control inputs.  

A multiple model approach can be used if additional fidelity is required to take into ac-

count twisting situations.  

1. Steering Equations 

The suitability of three linearized steering (sway–roll–yaw) models is studied for 

future path prediction.  As discussed earlier, sway–roll–yaw motion is decoupled from 

surge using small perturbation theory.  Surge velocity, u, is replaced by mean forward 

speed, U0.  The following discrete–time models are developed in detail and presented in 

Appendix B: 

a. Nomoto 1st Order Steering Equation – yaw rate only 
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 (2.3) 
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b. 2nd Order Steering Model – sway and yaw 
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c. Coupled Roll–Sway–Yaw Steering Model 
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 (2.5) 

 

2. The Speed Equation 

Two surge models are investigated.  The most basic model assumes constant for-

ward speed ( [ ] [ ]1u k u k= − ).  This turns out to be an adequate assumption most of the 

time, due to the typical large surge velocity time constants of ships and the relatively 

short path prediction interval.  However, high bandwidth maneuvering situations require 

more model fidelity.  Linear surge models are available, but they are only valid for small 

ranges around the trimmed vessel speed.  As a result, multiple linear trim points are re-

quired to model a typical vessel speed range.  Assuming u, v and r are observable vessel 

states; it is relatively straightforward to develop a non-linear speed equation that is linear 

in parameters.  This is the second model investigated: 
 

 
[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]
1 2 3

2 2
4 1 2

1

R

u k f u k f u k u k f v k r k

f r k g k g n k n kδ

+ = + +

+ + +

…
 (2.6) 

where:  

 Thrust ∝ n2 and n ≅ Trim RPM (2.7) 

 1 1 2 2 3 3 4 4n n n n n n n n n n= + + +  for multi shaft vessels (2.8) 

 2
2

2
1

2
RRR δδδ +=  for multi rudder vessels. (2.9) 
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D. NON-DIMENSIONAL PARAMETERIZATION 

It is useful to non-dimensionalize model parameters with respect to vessel speed.  

This keeps parameter coefficients stable over a wider range of operating conditions.  Sev-

eral systems of normalization exist, but the most common is the Prime system.   Appen-

dix C displays the normalization parameters for the Prime – I (′) and Prime – II  (′′) sys-

tems.  For consistency, all normalization in this paper will use the Prime – I system.  The 

typical vessel states for a 4–DOF model are non-dimensional in the Prime – I system as 

follows: 

 22 vuU += ; ′=′=′=′=′= RR;r
L
Ur;p

L
Up;vUv;uUu δδ   (2.10) 

 

E. DISCRETE SYSTEM INTEGRATION TECHNIQUES 

Data is generated from vessel math models by discrete–time integration of con-

tinuous systems.  Several techniques are available that range in fidelity and computa-

tional cost.  Appendix E summarizes three popular algorithms and the corresponding 

truncation error.  The Data Acquisition module uses the Runge–Kutta 2nd Order algo-

rithm to generate simulated vessel data.  Note that surface vessels typically display light 

damping in the roll mode.  Any open-loop integration of models with a roll mode should 

use the Runge–Kutta 2nd Order or higher techniques.   

 

F. CHAPTER SUMMARY 

Chapter II provided an overview of vessel modeling.  The body axis frame of ref-

erence was introduced relative to the North–East–Down inertial plane.  Simplified dy-

namic models were developed from rigid body dynamics.  The Prime – I System was 

used to non-dimensionalize model parameters.   Chapter III will present the recursive pa-

rameter estimation techniques for on–line parameter identification routines.  Both the re-

cursive and extended least–squares algorithms are discussed.  In addition, several meth-

ods are presented for coping with time–varying model parameters, including exponential 

forgetting and conditional updating. 
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III. PARAMETER IDENTIFICATION/ESTIMATION  

Most texts provide extensive examples of least–squares for SISO systems, but 

leave it to the reader to implement the algorithm for MIMO systems.  This chapter illus-

trates how to implement the RLS and ELS algorithms for MIMO systems typical of ves-

sel models.   

The Parameter Identification module implements the recursive least–squares 

(RLS) and extended least–squares (ELS) algorithms.  Ljung [Ref. 3] is an excellent text 

covering both the mathematical derivation and historical background of recursive pa-

rameter estimation techniques.   Ljung goes to great effort to point out that least–squares 

is a subset of similar algorithms with slightly different assumptions.  In this case, least–

squares techniques were selected due to widespread use and a straightforward implemen-

tation.  

For least–squares techniques to work, one must select a linear or linear in parame-

ters model with sufficient fidelity to capture the desired systems dynamics.  Vessel mod-

els that capture varying motion complexity were presented in Chapter II.  Specific im-

plementation in the Parameter Identification module is discussed in Chapter IV. 

 

A. LEAST–SQUARES ESTIMATION 

This thesis is based on parameter identification using various realizations of the 

least–squares technique.   The general least–squares formulation is traced to Gauss 

(1809) [Ref. 3].  Least–squares states that the unknown parameters of a mathematical 

model should be chosen in such a way that “the sum of the squares of the differences be-

tween actually observed and computed values, multiplied by numbers that measure the 

degree of precision, is a minimum” [Ref. 1]. 

Least–squares can be applied to models of the form: 

 ( ) ( ) ( ) ( ) ( )1 1 2 2
T

n ny i i i i iφ θ φ θ φ θ φ θ= + + ="  (3.1) 
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where ( )y i  is the observed value, θ is a vector of parameters of the model to be deter-

mined and ( )T iφ  is a vector of regression variables.  The parameters of the model, θ, are 

chosen to minimize the least–squares loss function ( )V ,tθ : 

 ( ) ( ) ( )( )
2

1

1
2

t
T

i
V ,t y i iθ φ θ

=

= −∑ . (3.2) 

Provided y is linear in the model parameters (θ), the least–squares criterion is 

quadratic with an analytic solution.  The cost function is minimized by setting the gradi-

ent to zero or by completing the square and solving for the minimum.  For either method, 

the analytic solution is the “normal equation:” 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1 1 1

t t t
T

i i i

ˆt t i i i y i P t i y iθ θ φ φ φ φ
−

= = =

     
= = =     

     
∑ ∑ ∑  (3.3) 

where 

 ( ) ( ) ( )
1

1

t
T

i
P t i iφ φ

−

=

 
=  

 
∑ . (3.4) 

A statistical interpretation of least–squares is that the model parameter estimates 

(θ̂ ) approach the true model parameters (θ ) as the number of observations approach in-

finity, provided the process is in the form of: 

 ( ) ( ) ( )Ty i i e iφ θ= +  (3.5) 

where θ is a vector of true model parameters, and ( )e i  is a vector of independent, identi-

cally distributed, zero mean random variables.  Extended least–squares (ELS) extends the 

concept to colored noise of the process ( ) ( ) ( )1v k C z e k−= , where C contains additional 

parameters to estimate. 

 
B. RECURSIVE LEAST–SQUARES  

The general least–squares technique is not suited for real–time, on–line parameter 

estimation due to the requirement to batch process large data sets.  As a result, many au-
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thors independently developed a recursive process, although the earliest reference is at-

tributed to Plackett (1950) [Ref. 3].   

1. Difference Equation Models 

The starting point for recursive least–squares is a difference equation model in the 

form of: 

 ( ) ( ) ( ) ( ) ( ) ( )kvmkybkubnkyakyaky mn +−++−=−++−+ …… 11 11  (3.6) 

where ( )v t  is an unspecified noise process.  Using 1z−  as the backward time shift opera-

tor, the equation may be written compactly as: 

 ( ) ( ) ( ) ( ) ( )1 1A z y k B z u k v k− −= +  (3.7) 

where A and B are polynomials of the delay operator 1z− : 

 ( ) n
n zazazazA −−−− ++++= …2

2
1

1
1 1  (3.8) 

 ( ) m
m zbzbzbzB −−−− +++= …2

2
1

1
1 . (3.9) 

For recursive methods, the system is reorganized into linear regression form using 

a model parameter vector (θ ), a lagged input-output data vector (φ )  and a noise process 

(v):  

 ( ) ( ) ( )kvkky T += θφ  (3.10) 

where 

 [ ]mn b,,b,a,,a …… 11=θ  (3.11) 

 ( ) ( ) ( ) ( ) ( ) ( )[ ]Tmku,,ku,ku,nky,,kyk −−−−−−−= …… 211φ . (3.12) 

The components of the data vector (φ) are referred to as regression variables. 

2. Recursive Computations 

The general least–squares algorithm may be solved using recursive equations.  

The results from the last iteration, (k – 1), are used to obtain an estimate of system pa-

rameters at the current time (k) without reprocessing the entire realization.  Essentially, 

all previous data is processed recursively and stored in the parameter estimates, regres-
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sion variables and covariance matrix.  A new parameter estimate is obtained by adding a 

correction proportional to the error between the measured value and the predicted value 

using the last parameter estimate: 

 ( ) ( ) ( ) ( )kkKkˆkˆ εθθ +−= 1  (3.13) 

where 

 ( ) ( ) ( ) ( )1−−= kˆkkyk T θϕε . (3.14) 

 

3. The ARX Model and Recursive Least–Squares 

As of yet, no attempt has been made to characterize the disturbance term (v).  

When the noise process is characterized as a white noise sequence, ( )e t , the model be-

comes:  

 ( ) ( ) ( ) ( ) ( )kekuzBkyzA += −− 11 . (3.15) 

With parameter and data vectors: 

 [ ]mn b,,b,a,,a …… 11=θ  (3.16) 

 ( ) ( ) ( ) ( ) ( )[ ]Tmku,,ku,nky,,kyk −−−−−−= …… 11ϕ . (3.17) 

This model is commonly referred to as the ARX model.  It is a combination of an 

autoregressive part (AR) ( ) ( )1A z y k−  and a control term ( ) ( )1B z u k− .  The control por-

tion is termed an exogenous variable (X) from economic literature [Ref. 3].  If the distur-

bance is other than white noise, the ARX model will provide biased estimates of the pa-

rameters. 

ARX model parameters are estimated using the recursive least–squares algorithm.  

The RLS equations are listed here without proof: 

 ( ) ( ) ( ) ( ) ( ) ( )( )11 −−+−= kˆkkykKkˆkˆ T θϕθθ  (3.18) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 111 −
−+−== ttPtIttPttPtK T ϕϕϕϕ  (3.19) 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( )1

111 1

−−=

−+−−−=
−

tPttKI
ttPtIttPtPtP

T

T

ϕ

ϕϕϕ  (3.20) 

where ( )tθ̂  is a vector of model parameter estimates, ( )tK  is the weighting factor vector 

for combining the correction with the previous estimate and ( )tP  is the covariance ma-

trix. 

The derivation and proof of the RLS equations is beyond the scope of this thesis.  

For the interested reader, Ljung and Södersröm [Ref. 4] and Astrom and Wittenmark 

[Ref. 2] are straightforward texts covering the subject.     

The RLS parameter estimate can be thought of as a Kalman filter for the process 

[Ref. 2]:  

 ( ) ( )1t tθ θ+ =  (3.21) 

 ( ) ( ) ( ) ( )Ty t t t e tϕ θ= + . (3.22) 

Many real–world systems are driven by colored noise disturbances.  Surface ves-

sels are disturbed by many factors including sea state.  Wave action is a colored noise 

process, which may be approximated by a first–order wave model.  If RLS is used, the 

signal should be filtered to remove or reduce colored noise prior to parameter estimation. 

4. Recursive Least–Squares and MIMO Systems 

The RLS algorithm may be extended to multi–input, multi–output (MIMO) sys-

tems.  The standard RLS equations are used.  But, the regression model is augmented to 

appropriate dimensions: 

 ( ) ( ) ( )Ty k k e kθ= Φ + . (3.23) 

An example is illustrated with the linearized, sway–yaw model.  For MIMO sys-

tems it is easiest to start from a discrete state–space representation of the system: 

 [ ] [ ] [ ] [ ]1 1x k F x k G u k v k= − + − + . (3.24) 

Assuming white noise disturbance, the sway–yaw model expands to: 
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The system is re-arranged in linear regression format: 

 [ ] [ ] [ ] [ ] [ ]1 21Ty k k k e k e kϕ θ  = − +    (3.26) 

where: 

 [ ] [ ] [ ]y k v k r k =    (3.27) 

 [ ] [ ] [ ] [ ]1 1 1T
Rk v k r k kϕ δ = − − −   (3.28) 
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Note that the RLS equations can be compactly implemented in matrix form with-

out breaking the algorithm into a system of SISO equations.  This is because the covari-

ance term, ( )P k , is solely a function of the regression vector, ( )kϕ .  In the sway–yaw 

model, the regression vector is identical for both the sway and yaw models.  When the 

RLS algorithm is extended to colored noise processes (ELS), this no longer holds true 

and the RLS equations must be treated as a system of multi–input, single–output models.   

5. The ARMAX Model and Extended Least–Squares 

Parameters may be estimated for systems with colored noise disturbances using 

the ARMAX model.  The disturbance process is characterized as a moving average of the 

white noise sequence ( )e t :   

 ( ) ( ) ( )1v k C z e k−=  (3.30) 

 ( ) r
r zczczczC −−−− ++++= …2

2
1

1
1 1  (3.31) 

The model becomes:  

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1A z y k B z u k C z e k− − −= +  (3.32) 
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with parameter and data vectors: 

 [ ]rmn c,,c,b,,b,a,,a ……… 111=θ  (3.33) 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1
T

k y k , , y k n , u k ,

,u k m , e k , , e k r .

ϕ = − − − − −

− − − 

…

… …
 (3.34) 

This model is commonly referred to as the ARMAX model.  It is a combination of 

an autoregressive part (AR) ( ) ( )1A z y k− , a moving average part (MA) ( ) ( )1C z e k− and 

a control part ( ) ( )1B z u k− .  The control portion is termed an exogenous variable (X) 

from economic literature [Ref. 3].  The ARMAX model can deal with first–order wave 

disturbances directly without pre-filtering the data. 

The recursive algorithm for the ARMAX model is termed extended least–squares 

(ELS).  The algorithm uses the RLS equations with augmented data and parameter vec-

tors.  The error parameter, ( )e k , is not known, but may be approximated by the predic-

tion error: 

 ( ) ( ) ( ) ( )1−−= kˆkkyk T θϕε  (3.35) 

with 

 [ ]rmn ĉ,,ĉ,b̂,,b̂,â,,âˆ ……… 111=θ  (3.36) 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1
T

k y k , , y k n , u k ,

,u k m , k , , k r .

ϕ

ε ε

= − − − − −

− − − 

…

… …
 (3.37) 

In most cases it is advantageous to update and store the prediction error based on 

the latest estimate of the model parameters instead of the ( 1k − ) update.  This is termed 

the posterior update: 

 ( ) ( ) ( ) ( )kˆkkyk T θϕε −= . (3.38) 

6. Extended Least–Squares and MIMO Systems 

ELS is best applied to MIMO systems by breaking the model up into a system of 

multi–input, single–output regression equations.  The individual models are solved using 
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the ELS algorithm and then reassembled into a MIMO system.  The sway–yaw model is 

used as an example: 

 [ ] [ ] [ ] [ ]1 1x k F x k G u k v k= − + − + . (3.39) 

RLS assumed the disturbance is white noise of the form [ ] ( ) [ ]1v k C z e k−= , 

where ( )1 1C z− = .  ELS adds the flexibility to process colored noise disturbances of the 

general form [ ] ( ) [ ]1v k C z e k−= .  Assuming colored noise disturbances, the sway–yaw 

model expands to: 

 
[ ]
[ ]

[ ]
[ ] [ ]

( ) [ ]
( ) [ ]

1
1 111 12 1

1
21 22 2 2 2

1
1

1 R

C z e kv k v kf f g
k

r k r kf f g C z e k
δ

−

−

    −     = + − +      −          
. (3.40) 

The model is arranged as a system of equations in linear regression format: 

 
[ ]
[ ]

[ ] [ ]
[ ] [ ]

1 1 1

2 2 2

1
1

T

T

y k k k
y k k k

ϕ θ
ϕ θ

   −
=    −   

 (3.41) 

where: 

 
[ ]
[ ]

[ ]
[ ]

1

2

y k v k
y k r k

   
=   

   
 (3.42) 

 [ ] [ ] [ ] [ ] [ ] [ ]1 1 1 1 1T
R v vk v k r k k k k rϕ δ ε ε = − − − − − …  (3.43) 

 [ ] [ ] [ ] [ ] [ ] [ ]2 1 1 1 1T
R r rk v k r k k k k rϕ δ ε ε = − − − − − …  (3.44) 

 [ ]1 11 12 1 11 1
T

rf f g c cθ = …    (3.45) 

 [ ]2 21 22 2 21 2
T

rf f g c cθ = …  (3.46) 
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The covariance matrix must be solved for each individual multi–input, single–

output model, resulting in increased computational and memory requirements compared 

to the RLS matrix MIMO solution.  However, there is one benefit to this approach.  The 

covariance matrix now applies individually to the output state.  In this case, the sway and 

yaw rate errors are tracked separately and one obtains separate covariance matrices for 

each.  This proves useful for estimating the bounds of the observed error for each state.   

7. The ARMAX Model and Recursive Maximum Likelihood 

Recursive maximum likelihood (RML) is a modification to the ELS algorithm.  

The regression vector (ϕ) is replaced by a regression vector filtered by the noise parame-

ter coefficients, ( )1C z−  in the gradient portion of the RLS equations.  The filtered regres-

sion vector (ψ) becomes [Ref. 1]:  

 ( ) ( ) ( ) ( ) ( )
( )

1
1

k
C z k k k

C z
ϕ

ψ ϕ ψ−
−

= ⇒ = . (3.48) 

The RML equations are: 

 ( ) ( ) ( ) ( ) ( ) ( )( )1 1Tˆ ˆ ˆk k K k y k k kθ θ ϕ θ= − + − −  (3.49) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 1
1 1TK t P t t P t t I t P t tψ ψ ψ ψ

−
= = − + −  (3.50) 

 ( ) ( ) ( )( ) ( )1TP t I K t t P tψ= − − . (3.51) 
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8. Nonlinear Models 

The recursive algorithms may be used for nonlinear systems provided the model 

is linear in parameters.  The nonlinear surge equation is employed as an example.  From 

Chapter II, the simplified surge equation in discrete–time is given by: 

 
[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]
1 2 3

2 2
4 1 2

1

R

u k f u k f u k u k f v k r k

f r k g k g n k n k .δ

+ = + +

+ + +

…
 (3.52) 

This nonlinear model is considered linear in parameters when the regression vector and 

parameters are defined as follows: 

 
( ) [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]2 2

1 1 1 1 1

1 1 1 1
T

R

k u k , u k u k , v k r k ,

r k , k , n k n k

ϕ

δ

= − − − − −

− − − − …
 (3.53) 

 [ ]1 2 3 4 1 2
Tf , f , f , f , g , gθ = . (3.54) 

 

C. TIME–VARYING PARAMETERS  

The recursive parameter estimation algorithms discussed in Section B were de-

veloped from time–invariant system models.  However, in practice, most systems contain 

some degree of time–varying parameters.  Surface vessel models definitely contain 

slowly varying parameters.  For instance, vessel ballasting will change due to fuel burn 

on a long voyage, resulting in a slow variation of the mass and center of gravity sensitive 

parameters.   In addition, linearized models are inherently time–varying due to the 

nonlinearity in the underlying system.  Maneuvering a vessel outside the valid range of a 

linear model (i.e., large speed change or hard rudder command) will require a time–

varying algorithm to capture the abrupt shift in model parameters.  Two extensions to the 

standard recursive algorithms, exponential forgetting and parameter resetting, are typi-

cally used to capture time–varying model parameters.  

1. Exponential Forgetting 

Exponential forgetting is a method to discount “older” samples of data so the 

most recent samples receive the greatest weighting.  It is well suited for slowly varying 
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parameters.  To obtain exponential forgetting, the least–squares criteria is adjusted such 

that the samples that are ‘n’ units old are weighted by the factor nλ  [Ref. 1]:  

 ( ) ( ) ( )( )
2

1

1
2

t
t i T

i
V ,t y i iθ λ φ θ−

=

= −∑ . (3.55) 

The recursive algorithm for RLS, ELS and RML with exponential forgetting, be-

comes: 

 ( ) ( ) ( ) ( ) ( ) ( )( )1 1Tˆ ˆ ˆk k K k y k k kθ θ ϕ θ= − + − −  (3.56) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 1
1 1TK t P t t P t t I t P t tϕ ϕ λ ϕ ϕ

−
= = − + −  (3.57) 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( )

1
1 1 1

1

T

T

P t P t P t t I t P t t

I K t t P t /

ϕ ϕ ϕ

ϕ λ

−
= − − − + −

= − −
 (3.58) 

where ( )tθ̂  is a vector of model parameter estimates, ( )tK  is the weighting factor vector 

for combining the correction with the previous estimate, ( )tP  is the covariance matrix 

and λ is the forgetting factor ( 0 1λ< ≤ ).  Note that setting 1λ =  will revert the algorithm 

to the standard recursive equations.   

The exponential forgetting algorithm is easily implemented.  However, care must 

be taken to prevent covariance “wind–up.”  Under no excitation, the covariance matrix 

will grow exponentially.  One method to deal with wind–up is to switch on forgetting 

only during periods of persistent excitation.  This is termed “conditional forgetting.”  One 

method is to update the parameter estimate and covariance if [Ref. 1]:  

 [ ] ( ) [ ] ( )2 1Tk P k kϕ ϕ λ> − . (3.59) 

Exponential forgetting may also be used to discount the initial start-up transient.  

After a suitable number of samples are processed and the parameter estimates are settling 

down, a high forgetting factor (small λ) may be switched on for a brief period.  This will 

discount the initial samples and allow for further refinement of the parameter estimates.   
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An exponential forgetting time constant is selected to correspond with the rate of 

change in the model parameters.  The forgetting time constant is obtained from:    

 fTeλ
∆−

=  (3.60) 

where fT  is the exponential forgetting time constant, λ is the forgetting factor and ∆ is 

the sample interval.   

An appropriate forgetting factor may also be selected from Table 3.1.  One must 

keep in mind that a shorter time constant results in more noise corruption of the parame-

ter estimate.  This is due to the reduction in smoothing obtained from larger sample sets.  

 

fT ∆  λ 

1 0.37 

2 0.61 

5 0.82 

10 0.90 

20 0.95 

50 0.98 

100 0.99 
  

Table 3.1 Exponential Forgetting Factor Time Constant [From Ref. 1.] 
 

2. Covariance Resetting 

Covariance resetting is a method to deal with abrupt changes in model parame-

ters.  The basic concept is to reset the covariance matrix, P, to a fixed constant times the 

identity matrix, P Iα= .  Resetting is commanded periodically or when specific criteria 

are met based on a priori knowledge of the system time variation.  Covariance resetting is 

highly effective when commanded at appropriate times, but will introduce noise in the 

parameter estimate if commanded during a period of static model parameters [Ref. 1].  
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3. Conditional Updating 

One drawback to exponential forgetting is covariance wind–up.  During periods 

of low excitation, the covariance will increase exponentially.  During the next period of 

excitation, covariance wind–up will have increased the gain to the point of causing erratic 

parameter estimates. 

Conditional updating is one method to mitigate windup.  The general concept is 

similar to conditional forgetting.  The estimate and covariance matrix are only updated 

when excitation exceeds a specified level.  If too stringent a condition is picked, the pa-

rameter estimates will be updated infrequently.  If too small a criterion is selected, co-

variance wind–up will occur.  A suggested method is to use the test case [Ref 1]: 

 ( ) ( ) ( ) ( )2 1Tt P t tϕ ϕ λ> − . (3.61) 
   

4. Directional Forgetting 

Another drawback of standard exponential forgetting is the inability to control 

forgetting in multiple input systems.  All regression variables are treated the same way.  

Insufficient excitation in one or more regression variables will cause covariance windup 

in that term.  Even conditional updating won’t prevent covariance windup.  A solution is 

to implement forgetting in the direction of the excitation.  There are many variations of 

directional forgetting.  Astrom [Ref 1] suggests using the following method to update the 

covariance matrix in the direction of excitation:   

 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( )

( ) ( )
1

1 1
21 1 1

T
T

T

t P t t
P t P t t t

t t

ϕ ϕ
λ ϕ ϕ

ϕ ϕ

−
− −

 
 + = + + −
 
 

. (3.62) 

 

D. CHAPTER SUMMARY 

This chapter discussed recursive parameter estimation techniques for identifying 

model parameters.  Both the recursive and extended least–squares algorithms were pre-

sented.  Exponential forgetting, covariance resetting, conditional updating and directional 

forgetting are techniques for dealing with time–varying parameters.  Chapter IV will step 

through the overall system design.  Actual model parameterization structures are covered 

in detail.  
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IV. DYNAMIC VESSEL TRACK SYSTEM DESIGN 

As discussed in the introduction, LabView by National Instruments (NI) was cho-

sen for the overarching software platform due to a rich, built-in graphical user interface 

and inherent data acquisition capability.  LabView function block scripting can be per-

formed with the native HiQ language or with MatLab through an X-Windows interface.  

The MatLab approach was chosen because the author and most readers are familiar with 

MatLab syntax.  This chapter describes the design features implemented in the Data Ac-

quisition, Parameter Identification, Track Prediction and Track Display modules.   

 

DATA 
ACQUISITION 

• Vessel Models 
• Sea Trials Data 

PARAMETER 
IDENTIFICATION
• RLS / ELS / RML 
• Exp Forgetting 

TRACK 
PREDICTION 
• Open Loop 

Integration 

TRACK DISPLAY
 

• ECDIS Format 
• Prediction Quality

 

Inputs – u(k) 
 

States –x(k) 

Inputs – u(k)
 

States –x(k) 

Parameters
 

θ(k) 

Estimated 
 

Track 
 

SYSTEM BLOCK DIAGRAM 

 

Figure 4.1 Overall System Block Diagram 

 

 A. DATA ACQUISITION MODULE 

The Data Acquisition Module generates truth data from various vessel math mod-

els or processes sea trials data.  In the math model mode, the user interactively operates 

the vessel controls or loads a predetermined sequence of control inputs.  In the sea trials 

mode, control input and vessel states are obtained from stored sea trial data files.  Future 

enhancements could include a real–time data capture capability.   

The Data Acquisition module outputs the 23–term state vector, including control 

inputs, in the following format: 

 
[ ] 1 2 1 2 3 4pos pos R R lat long RW RW

Ci _ x Ci _ y i _ x i _ y

x t u v p r x y n n n n t x y V

V V V V

φ ψ δ δ ψ= 


…

…
   (4.1) 
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where:  

 u – Surge Velocity (m/s)  v – Sway Velocity (m/s) 

 p – Roll Rate (rad/s)   r – Yaw Rate (rad/s) 

 φ – Roll Angle (rad)   ψ – Yaw Angle/True Heading (rad) 

 xpos – Relative Position (North-m) ypos – Relative Position (East-m) 

 δR1/δR1 – Rudder Angles (rad)  n1/n2/n3/n4 – Shaft Turns (RPM) 

 t – Time (sec) 

 xlat – Latitude (decimal deg)  ylong – Longitude (decimal deg)  

 VRW – Relative Wind (m/s)  ψRW – Relative Wind Direction (rad)  

 VCi – x – Current in x-direction (m/s) VCi – y – Current in y-direction (m/s) 

 Vi – x – Inertial Velocity (x - m/s) Vi – y – Inertial Velocity (y - m/s). 

Note: Hooks are in place for relative wind direction and speed.  Wind is not currently 

modeled.  Wind effects are captured in the general disturbance factor.  Growth options 

could include wind parameter estimation. 

  

1. Vessel Math Model Mode 

The Math Model Mode generates vessel state data from a known math model for 

validation of the Parameter Identification module.  Several model structures are select-

able, all of which are based on the “Containership” model developed by Fossen [Ref. 1].  

This model was selected due to its widespread use in vessel dynamics literature.  Table 

4.1 summarizes the model structure cases.  All lateral–directional model parameters are 

non-dimensional using the Prime I (′) system.    
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1st Order Roll and 

Yaw Random Wave 

Models  

(See Chapter II, Sec-

tion C) 

 

4 3rd Order N-L 

Surge-Sway-

Roll-Yaw 

Coupled 4-DOF N-L Equations of Motion  

with 1st Order Roll–Yaw Wave Model  
 

1st Order Roll and 

Yaw Random Wave 

Models  

(See Chapter II, Sec-

tion C) 

 
Table 4.1 Data Acquisition Module Math Models 
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2. Sea Trials Data Mode 

The Sea Trials Data Mode extracts raw sea trials data from a data file and formats 

the data into a 23–term state vector.  For vessel data without angle rates, the rates are 

generated with a MatLab script using simple first–order differentiation: 

 [ ] [ ] [ ]
∆

−−
=

1kxkxkx� . (4.2) 

The Naval Surface Warfare Center, Carderock Division, supplied maneuvering 

data recorded during the USCGC HEALY (WAGB 20) Performance and Special Trials 

from 25-26 August 1999 [Ref. 5].  Figures 4.2 and 4.3 depict the 420-foot twin screw, 

twin rudder icebreaker.  Table 4.2 displays principal vessel characteristics.   

The USCGC HEALY (WAGB 20) trials data proved to be an excellent resource.  

The instrumented vessel has additional sensors not always found on similar sized ships.  

For example, through the water and over the bottom sway velocity are both available 

from a Doppler transducer.  Appendix E summarizes the parameters available in the data 

files.  Mr. George Brodie of the Naval Surface Warfare Center, Carderock Division, sup-

plied both the data files and a data mining LabView VI.  The VI extracts desired parame-

ters and writes them to a tab delimited text file.  The Sea Trials Mode of the Data Acqui-

sition module then reads the file and assembles the 23–term state vector.  Data are also 

converted to appropriate units.  In general, the states are kept in SI units. 

 
Figure 4.2 Drawing of USCG 420’ Icebreaker Class - USCGC HEALY (WAGB 20) 

[From Ref. 6] 
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Figure 4.3 Photo of USCG 420’ Icebreaker Class - USCGC HEALY (WAGB 20)  

[From Ref. 7] 

 

Length, Overall 420'0" (128 meters) 
Beam, Maximum 82'0" (25 meters) 
Draft, Full Load 29'3" (8.9 meters) 
Displacement, Full Load 6,000 LT 
Propulsion Diesel Electric 
Generating Plant 
Drive Motors 

4 Sultzer 12Z AU40S 
2 AC Synchronous, 11.2 MW 

Shaft Horsepower 30,000 Max HP 
Propellers 2 Fixed Pitch, 4 Bladed 
Auxiliary Generator EMD 16-645F7B, 2400kW 
Fuel Capacity 1,220,915 GAL (4,621,000 liters) 
Cruising Speed 12 knots @ 105 RPM 
Max Speed 17 knots @ 147 RPM 

Icebreaking Capability 4.5 ft @ 3 knots (continuous) 
8 ft (2.44 m) Backing and Ramming 

Science Labs Main, Bio-Chemical, Electronics, Mete-
orological, Photography 

Accommodations 19 Officer, 12 CPO, 54 Enlisted, 35 Sci-
entists, 16 Surge, 2 Visitors 

 
Table 4.2 USCGC HEALY (WAGB 20) Principal Characteristics [From Ref. 7] 
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B. PARAMETER IDENTIFICATION MODULE 

 

1. Parameter Estimation Model Structures 

The Parameter Identification Module implements the RLS and ELS algorithms for 

several model cases.  The user selects the cases from the top–level control panel.  Table 

4.3 summarizes the sway–roll–yaw model structures currently programmed into the 

module.  The same MATLAB parameter estimation script is used for all cases.  It imple-

ments ELS for the linear coupled sway–roll–yaw model with five terms of noise estima-

tion.  Appropriate terms in the regression vector (ϕ) are zeroed to implement a lesser 

case.  The bias terms (e0v, e0p and e0r) may be individually zeroed from the top control 

panel.  Table 4.3 displays the parameterization and regression vectors for the ELS case.  

RLS is obtained from the same equations by zeroing the error regression terms and is en-

abled by a toggle switch on the control panel.  All lateral–directional model parameters 

are non-dimensional by the Prime I (′) system.   

Table 4.4 summarizes the two RLS surge models.  Case #1 assumes a constant 

surge velocity.  This is useful for investigating the various sway–roll–yaw models with-

out cross coupling with the surge equation.  Recall that the primary purpose of the pa-

rameter identification module is to estimate model coefficients and pass them to the 

Track Prediction Module.  Setting the surge equation to a constant removes one degree of 

freedom for research purposes and does not pose a large limitation because most vessel 

maneuvering is performed at a relatively steady forward speed.  Backing, collision avoid-

ance and pier–side maneuvering are exceptions.  Case #2 implements the non-linear, lin-

ear in parameter surge equation.  All non-linear surge model parameters are dimensional. 
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CASE  SWAY-ROLL-YAW MODEL STRUCTURE 
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3 - ELS Linear Sway–Roll–Yaw: 
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Table 4.3 Sway–Roll–Yaw Parameter Identification Model Structures 
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CASE  SURGE EQUATION MODEL STRUCTURE 

1 - RLS Constant Surge:  [ ] [ ]1−= xuxu  

2 - RLS Non-Linear Surge - Linear in Parameters: 
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Table 4.4 Surge Parameter Identification Model Structures 
 

2. Eigenvalue Calculations 

In addition to estimating model parameters, the Parameter Identification Module 

calculates and plots sway–roll–yaw plant eigenvalues in real–time.  Observing eigenvalue 

convergence and stability provides a better indication of parameter identification progress 

than observing a long list of individual parameters. 

It is a trivial task to calculate eigenvalues for continuous–time models using any 

of several software packages, including LabView or MatLab.  However, the parameter 

identification model estimates the coefficients for a discrete–time model.  The discrete–

time plant model is converted back to a continuous–time plant to perform the eigenvalue 

calculation.  The linear, sway–roll–yaw model is the most complex of the models tested, 

so it will be used to demonstrate the process. 

Recall the continuous–time sway–roll–yaw model with heading integration: 
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The discrete–time state–space representation of the system is: 

 [ ] [ ] [ ]kuGkxFkx +=+1  (4.4) 
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where: 

 ∆= AeF  and ( )BIFAG −= −1 . (4.5) 

Provided ∆ is small, the ZOH (Euler discretization) system approximation may be used: 

 ∆+≈ AIF   and  ∆≈ BG , (4.6) 

yielding a discrete plant matrix F: 
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Roll integration is known a priori, so there is no need to verify it through parameter iden-

tification.  The reduced parameter identification model becomes 3 x 4 with the roll inte-

gration removed: 
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After the parameters are identified, the model is augmented back to the square (4 x 4) dis-

crete plant matrix, F, so the continuous–time plant matrix, A, may be calculated:   

 

11 12 13 14

21 22 23 24

31 32 33 34

0 0 1

f f f f
f f f f

F
f f f f

 
 
 =
 
 ∆ 

. (4.9) 

The parameter estimation is performed with non-dimensional states to reduce parameter 

sensitivity to vessel speed.  In other words, the parameter estimation module is actually 

estimating F′ according to the Prime – I system.  So, the continuous–time plant matrix, A, 

is time scaled to obtain dimensional eigenvalues: 
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 ( )logm F LA
U

′
= ⋅

∆
. (4.10) 

 

3. Non-Dimensional Time Scaling 

Vessel parameter estimation is best performed with non-dimensional states to 

minimize vessel velocity effects.  As stated earlier, the parameter estimation module is 

actually estimating F′ according to the Prime – I system.  An unintended outcome is a 

time scaling problem.  As written, the RLS and ELS equations assume a constant sam-

pling interval.  However, in this case the fixed, dimensional sampling interval is speed–

dependent in the Prime – I as follows: 

 
L
U

∆=∆′ . (4.11) 

The basic RLS/ELS equations work by generating an error between an estimated 

non-dimensional state and the actual non-dimensional state using the ZOH approxima-

tion:  

 ( ) ( ) ( ) ( )1−′′−′=′ kˆkkyk T θϕε . (4.12) 

If the RLS/ELS equations are not adjusted for sample interval speed dependence, 

the estimated non-dimensional parameters are speed–dependent.  The author chose to 

work around the problem by fixing the non-dimensional sampling interval and then time 

scaling the parameter estimates to correspond to the actual sampling interval.  The pa-

rameters are scaled prior to calculating the estimation error (Equation 4.12) using the fol-

lowing technique: 

 ( ) 01 0 0 0 1 0 0 0time scaled n m n m
Uˆ ˆ [ , , , ] [ , , , ]
U

θ θ + +′ ′= − +… …  (4.13) 

where U0 is the average service speed and U is the actual speed. 

Another way to get around the time scaling problem is to implement a log scaled, 

speed–dependent sampling interval directly into the RLS/ELS equations.  This would 

provide more robust time scaling and reduce speed dependency caused by the ZOH ap-

proximation.  Unfortunately, the author discovered the time scale problem late in devel-
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opment and used the work around listed above rather than completely re-write the ELS 

code. 

4. Current Estimation 

The Parameter Estimation Module provides estimated current to the Path Predic-

tion Module.  Current is obtained by subtracting measured “through the water” velocity 

from the inertial velocity.  This is most easily accomplished by transforming the water 

velocity to the NED tangent plane: 

 WbibiCi VRVV −−=  (4.14) 

where VCi is the current in the NED inertial reference plane, Vi is the vessel inertial veloc-

ity in the NED reference plane, Rb-i is the body axis to NED rotation matrix and VWb  is 

the vessel water velocity measured in the body axis system 

The current estimate is filtered by a simple five–parameter moving–average filter.  

In addition, current estimation is limited to periods of low turn rate and low rudder de-

flection to reduce errors caused by inaccurate sideslip measurement.  

 

C. PATH PREDICTION MODULE 

The Path Prediction Module performs current adjusted, open–loop integration to 

estimate future path over the ground.  An array of track points is passed to the Track Dis-

play Module.  Final vessel heading is also passed so that a scaled and rotated vessel out-

line may also be displayed at the path prediction endpoint. 

When ELS is selected, the initial integration time step uses ELS filtering to pro-

vide the best estimate of the initial states.  For instance, integration for the yaw rate 

model is initiated with: 

 ( ) ( ) ( )1T ˆy k k kϕ θ= −  (4.15) 

where: 

 [ ] [ ] [ ] [ ] [ ]1 1 1 1
T

Rk r k k k k rϕ δ ε ε = − − − − …  (4.16) 

 [ ] 1 1 0 1

T

r r
ˆˆ ˆ ˆ ˆk f g e c cθ  =  … . (4.17) 
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Subsequent time steps are integrated using the model parameters and regression 

vector without the filter terms ( ( )1C z− ):   

 [ ] [ ] [ ]1 1 1
T

Rk r k kϕ δ = − −   (4.18)  

 [ ] 1 1 0

T

r
ˆˆ ˆk f g eθ  =   . (4.19) 

Note that bias terms are still included because they continue to compensate for sensor bi-

ases and environmental disturbances throughout the integration interval. 

 The Path Prediction Module also captures the maximum left and right roll angles 

encountered during integration and passes them to the Track Display Module for display.  

This is a useful function for carriers maneuvering during aircraft handling or flight opera-

tions. 

 

D. TRACK DISPLAY MODULE 

The Track Display Module presents the path estimate to the vessel bridge team in 

a graphical format.  Figure 4.4 shows a snapshot of the primary system display.  Indica-

tors are provided for rudders, shaft speed, heading, etc.  Note that many additional con-

trols are also placed on this top–level display.  This is purely for developmental proposes 

and only a few selections would be available to the user in an actual implementation.   

An estimated path-over-the-ground line is overlaid in real–time on the top–level 

ECN image.  In addition, a scaled and rotated vessel outline is displayed at the final esti-

mated position.  The primary project emphasis was on parameter identification and not 

the development of an interactive electronic chart viewer.  So, the simulation is some-

what crude but sufficient to demonstrate the overall concept.   

ECN images were obtained from NOAA’s ECN databases.  The databases are 

available for free download at http://chartmaker.ncd.noaa.gov/mcd/enc/download.htm.  

An ECN viewer is required to process the database files into an electronic chart.  A free 

viewer called “SeeMyDEnc” was downloaded from the Seven C’s website at 

http://www.sevencs.com.  After centering and zooming, an ECN image is exported as an 
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Windows bitmap (“.bmp”) file.  The latitude and longitude of corner points is also re-

quired to appropriately scale the image.   

 

 
Figure 4.4 Top Level Controls and Display  

 

One of the reasons LabView was selected as the overall software platform is a 

rich graphical user interface.  LabView contains built-in capability to read the popular PC 

image files and then draw graphics on top of the image by manipulate pixels.  In this 

case, the primary functionality used was the “draw multiple lines” on a picture VI.  The 

path estimation and vessel outline data points are scaled and mapped to individual pixels.  

The “draw multiple lines” VI is then called to draw the lines and display the image.   

In addition to estimated track data, a breadcrumb trail, or past track, is left behind 

the vessel.  When a recorded file is the data source, the system can overlay the track for 
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the entire file at start-up.  This is particularly useful for comparing the estimated path to 

actual path.  

 

E. CHAPTER SUMMARY 

This chapter stepped the reader through the overall path prediction system design.  

The Data Acquisition Module obtains and formats vessel state vector data from selectable 

math models or from previously recorded sea trials data.  The vessel data is passed to the 

Parameter Identification Module where the model parameters are recursively estimated.  

The model parameters are used by the Path Prediction Module to estimate future vessel 

path over the ground.  Vessel path is estimated through open–loop integration of the ves-

sel model using the current state observation as the initial condition.  Finally, the pre-

dicted path is passed to the Track Display Module for overlay on an electronic chart im-

age.  Results are presented in Chapter V in a build-up approach.  System functionality is 

validated prior to presenting full system performance with real–world sea trials data. 

 

 
 
 
 



41

V. RESULTS 

Results are presented in a build up approach with the final goal being to demon-

strate overall system performance while processing real–world sea trials data.  Parameter 

estimation functionality is tested in a noise free environment prior to proceeding to the 

noisy sea trials data.  The general flow of the results section is as follows: 

• Verify the steering (v–p–r) Parameter Estimation Module RLS/ELS algo-

rithms using math model data.   

• Investigate covariance wind–up and numerical stability. 

• Compare the relative merits of the linear sway–roll–yaw models. 

• Compare linear model matching to non-linear truth data. 

• Verify current and bias algorithms. 

• Demonstrate linear and non-linear surge model performance. 

• Demonstrate end-to-end path prediction in a noisy environment using sea 

trials data.  

 

A. STEERING PARAMETER ESTIMATION MODULE VERIFICATION  

The lateral–directional (v–p–r) parameter estimation implementation was con-

firmed using linearized containership truth model data.   All three RLS/ELS vessel mod-

els demonstrate stable convergence in a noise free environment.   

A standard series of rudder input excitation was applied to each model for ap-

proximately 300 seconds.  Identical control inputs allow direct comparison of results.  

The system was initialized to the settings in Table 5.1.  Exponential forgetting was re-

quired to discount start-up transients and obtain parameter convergence in a reasonable 

time.   
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Parameter Setting 

Truth Data Linearized Containership Model – Uo = 7m/s 

Truth Model Time Step 0.2 s (RK2 Integration) 

RLS/ELS – v-p-r Model ELS with v, p and r Bias Enabled 

RLS/ELS Time Step 0.2 s 

Exponential Forgetting 0.99 for v-p-r Model 

Directional Forgetting On 

Covariance Reset Auto @ cond Pvpr > 0.5 x 106, Pvpr = Pvpr + 10*I 

Surge Model Constant Surge Speed (u[k] = u[k – 1]) 

 
Table 5.1 Settings for Parameter Estimation Module Verification  

 

1. Linearized Yaw Rate Model 

The yaw rate only model was verified with yaw rate truth data from the linearized 

Fossen containership model (Table 4.1 – Case 1).  Figure 5.1 shows the rudder excitation 

sequence and resulting vessel states.  Note that only yaw rate is excited with this simpli-

fied model.  Figure 5.2 demonstrates plant and control parameter convergence.  The 

RLS/ELS algorithm is estimating one plant and one control parameter for a total of two 

parameters.  Figure 5.3 illustrates yaw mode eigenvalue convergence.  Note that the pa-

rameters and eigenvalues tend to be slightly faster than in the truth model.  This is due to 

the ZOH approximation used in the discrete to continuous–time conversion.  A longer 

non-dimensional sample time (∆′) increases this effect. 

2. Linearized Sway–Yaw Model 

The linearized sway–yaw model was verified with truth data from the linearized 

Fossen containership model (Table 4.1 – Case 2) in a similar fashion to the yaw rate 

model.  Figure 5.4 shows the rudder sequence used to excite the vessel states.  Notice that 

both sway velocity and yaw rate are now excited.  Figure 5.5 demonstrates plant and con-
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trol parameter convergence.  The RLS/ELS algorithm is now estimating four plant and 

two control parameters for a total of six parameters.  Figure 5.6 illustrates sway and yaw 

mode eigenvalue convergence.  The incorporation of the much slower sway mode causes 

parameter identification convergence to slow as well.  Initial sway–yaw convergence oc-

curs in approximately 65 seconds versus 30 seconds for just the yaw mode.  Again, the 

parameters and eigenvalues tend to be slightly faster than the truth model due to the ZOH 

approximation used in the discrete to continuous–time conversion. 

3. Linearized Sway–Roll–Yaw Model 

The linearized sway–roll–yaw model was verified with truth data from the lin-

earized Fossen containership model (Table 4.1 – Case 3).  Figure 5.7 shows the rudder 

sequence and associated vessel states.  Notice that all lateral-directional states are excited 

with the v–p–r model.  Figure 5.8 demonstrates plant and control parameter convergence.  

Switching from the sway–yaw (v–r) model to the sway–roll–yaw (v–p–r) doubles the or-

der to a 4x4 plant model, including roll angle integration.  This results in the estimation 

of twelve plant and three control parameters.  Convergence occurs in approximately 250 

seconds versus 30 seconds for the 1x1 yaw plant model and 65 seconds for the 2x2 sway-

yaw plant model.  The convergence rate is roughly proportional to the size of the model 

squared.   

Figure 5.9 illustrates sway, roll and yaw mode eigenvalue convergence.  The 

lightly damped roll mode is demonstrated by two eigenvalues in the polar plot.   Notice 

that during the convergence process, the roll mode makes two trips to the unstable, right 

hand plane.  This is more pronounced when the vessel states are excited by a sea state, as 

some wave sequences will make the roll mode appear unstable.  As with the other mod-

els, the parameters and eigenvalues tend to be slightly faster than the truth model due to 

the ZOH approximation used in the discrete– to continuous–time conversion. 
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Figure 5.1 Yaw Rate Model Excitation 
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Figure 5.2 Yaw Rate Model Parameter Convergence 

 
 

 
 

Figure 5.3 Yaw Rate Model Eigenvalue Convergence 
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Figure 5.4 Sway–Yaw Model Excitation 
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Figure 5.5 Sway–Yaw Model Parameter Convergence 
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Figure 5.6 Sway–Yaw Model Eigenvalue Convergence 
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Figure 5.7 Sway–Roll–Yaw Model Excitation 
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Figure 5.8 Sway–Roll–Yaw Model Parameter Convergence 
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Figure 5.9 Sway–Roll–Yaw Model Eigenvalue Convergence 
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B. INVESTIGATION OF COVARIANCE WIND–UP  

Exponential forgetting was implemented to discount start-up transients and cap-

ture time–varying parameters.  However, exponential forgetting causes covariance wind–

up during periods of insufficient excitation.  Even if there is sufficient excitation from 

some states to keep a portion of the covariance matrix bounded, the under–excited pa-

rameters will still cause covariance wind–up.  Standard exponential forgetting is applied 

evenly to all columns of the covariance matrix update, causing exponential growth in the 

unexcited portion of the covariance matrix.   

Two techniques are implemented to deal with covariance wind–up. One is condi-

tional updating and the other is directional forgetting combined with automatic covari-

ance resetting.  Implementation of conditional updating is straightforward.  The parame-

ter estimation algorithm updates only when sufficient excitation is present to contribute to 

the parameter estimation solution.  The Parameter Estimation Module conditionally up-

dates when: 

 ( ) ( ) ( ) ( )λϕϕ −> 12ttPt T . (5.1) 

Directional forgetting proved more difficult to implement.  The matrix inverse 

operation in the directional forgetting algorithm (Equation 3.62) creates numerical insta-

bility when the covariance matrix is ill conditioned.  To prevent instability, the covari-

ance matrix is reset when the condition number exceeds a preset threshold.  The most ef-

fective reset seems to be the addition of a small identity matrix.  The combination of con-

ditional updating and directional forgetting with automatic covariance reset performed 

well.  The next section illustrates the progression of techniques implemented to control 

covariance wind–up.  Table 5.2 lists the settings and Figure 5.10 displays the excited 

states for all three scenarios. 
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Parameter Setting 

Truth Data Linearized Sway-Roll-Yaw  

Containership Model – Uo = 7 m/s 

Truth Model Time Step 0.2 s (RK2 Integration) 

RLS/ELS – v-p-r Model ELS with v, p and r Bias Enabled 

RLS/ELS Time Step 0.2 s 

Exponential Forgetting 0.99 for v-p-r Model 

Covariance Reset Off or 

Auto @ cond Pvpr > 0.5 x 106, Pvpr = Pvpr + 10*I 

Surge Model Constant Surge Speed (u[k] = u[k – 1]) 

 

Table 5.2 Initialization Settings for Covariance Wind–Up Investigation 
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Figure 5.10 Vessel State Excitation During Covariance Wind-Up Investigation 

 

1. Exponential Forgetting Induced Covariance Wind–Up 

Figure 5.11 displays the trace and condition number of the sway–roll–yaw covari-

ance matrices with standard exponential forgetting.  The covariance matrix displays clas-

sic wind–up due to lack of excitation of all the parameters.  It is important to note that 

standard exponential forgetting acts evenly across all parameters.  Thus, the covariance 
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matrix winds up even with just one unexcited parameter.  In this case, the noise parame-

ter terms are largely unexcited and display exponential growth.  After 300 seconds, the 

algorithm displays numerical instability.  The condition number of the covariance matrix 

also grows exponentially with the trace. 

2. Covariance Wind-Up Mitigated by Directional Forgetting 

Figure 5.12 displays the trace and condition number of the sway–roll–yaw covari-

ance matrices with directional forgetting.  Covariance growth is well behaved.  However, 

inversion of the covariance matrix causes instability at 103 seconds and again at 220 sec-

onds.  Interestingly, the instability recovers after the episode at 103 seconds.  The second 

episode at 220 seconds crashed the calculations.   

3. Directional Forgetting Combined with Covariance Resetting 

Figure 5.13 displays the trace and condition number of the sway–roll–yaw covari-

ance matrices with directional forgetting and automatic covariance reset enabled.  Several 

runs were conducted with different excitation to determine a suitable covariance reset cri-

teria.  Numerical stability seemed assured when the condition of P was kept less than 

0.5x106.  A suitable reset value was also needed.  The first runs reset the covariance ma-

trix to the initial value of 5000*I.  The resulting high gain caused drift in already con-

verged parameters.  Another method is to add a small identity matrix.  This approach 

worked well.  In Figure 5.13, the covariance matrix was reset to 10P P * I= + .  
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Figure 5.11 Trace and Condition Number of Covariance Matrices During Standard 

Exponential Forgetting (λ = 0.99) 
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Figure 5.12 Trace and Condition Number of Covariance Matrices During Directional 
Forgetting without Covariance Reset (λ = 0.99) 
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Figure 5.13 Trace and Condition Number of Covariance Matrices During Directional 
Forgetting with Covariance Reset @ Cond (P) > 0.5x106  (λ = 0.99) 
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C. INVESTIGATION OF SIMPLIFIED SWAY–ROLL–YAW MODELS  

Section A verified the computational integrity of the three linear steering models 

and Section B investigated methods for mitigating covariance wind–up.  Now, suitability 

of linear steering models for maneuvering path prediction is investigated.  

Parameter estimation stability and path prediction snapshots were compared for 

the yaw rate (r), sway–yaw (v–r) and sway–roll–yaw (v–p–r) models.  All three models 

were excited by identical truth data from the linearized containership model.  Both the 

sway–yaw and sway–roll–yaw models demonstrated sufficient fidelity for maneuvering 

path estimation.  The yaw rate model was found to be only suitable for low bandwidth 

control inputs that generate a nearly constant turn rate.  

A standard series of rudder input excitation was applied to all three models for 

approximately 500 seconds.  Exponential forgetting was enabled.  Identical control inputs 

and state excitation allows direct comparison of results.  The system was initialized to the 

settings in Table 5.3.  Figure 5.14 displays the control inputs and states that stimulated 

the parameter estimation models.  

 

Parameter Setting 

Truth Data Linearized Containership Model – Uo = 7 m/s 

Truth Model Time Step 0.2 s (RK2 Integration) 

RLS/ELS – v-p-r Model ELS with v, p and r Bias Enabled 

RLS/ELS Time Step 0.2 s 

Exponential Forgetting 0.99 for v-p-r Model 

Directional Forgetting On 

Covariance Reset Auto @ cond Pvpr > 0.5 x 106, Pvpr = Pvpr + 10*I 

Surge Model Constant Surge Speed (u[k] = u[k – 1]) 

 
Table 5.3 Settings for Investigation of Sway–Roll–Yaw Models 
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Figure 5.14 Vessel State Excitation for Sway–Roll–Yaw Model Comparison 
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1. Linear Yaw Rate Model 

Parameter estimation and path prediction from the yaw rate model was compared 

to Fossen’s linearized sway–roll–yaw containership model.  The truth model control in-

puts and excited states are displayed in Figure 5.14.  Yaw model parameter estimation 

versus time is displayed in Figure 5.15.  The corresponding truth model parameter is plot-

ted as a straight line for comparison.  The control parameter term, yaw rate due to rudder 

deflection, was reasonably steady and close to the true parameter.  This indicates that the 

yaw rate model adequately captures the steady–state yaw rate.  However, the plant pa-

rameter, a′33, showed poor parameter stability.  It even became unstable passing 475 sec-

onds.  Figure 5.16 compares the estimated yaw model eigenvalue to the truth model sway 

and yaw rate eigenvalues.  It is evident that the yaw rate model picked up influence from 

both the sway velocity and yaw rate.  However, model adaptation lags control excitation.  

As result, the yaw rate model provided poor path prediction in maneuvering situations. 

Figure 5.17 compares yaw rate model path prediction snapshots to the full truth 

model at time equal to 170, 200 and 230 seconds, respectively.  The t = 170 seconds 

snapshot is shortly after initiation of a steady 20 degree left rudder input.  The author 

immediately noted that path integration using initial vessel heading created poor results.  

This was evidenced by the immediate divergence between actual vessel path and pre-

dicted path when the vessel has sideslip.  For the yaw rate model, the path integration ini-

tial condition needs to take into account vessel sideslip.  As a result, the algorithm was 

modified to start with the vessel course through the water.  Figure 5.18 displays the same 

snapshot comparison as Figure 5.17, but with the modified path integration initial condi-

tion.  Path prediction is much better, but the yaw rate model still performed poorly.  At 

170 seconds, the yaw rate considerably over predicts turn rate and under predicts turn di-

ameter.  At 200 seconds, the opposite occurs.  Finally, at 230 seconds (over one minute 

after the turn is commenced), the yaw rate model performs adequately.  This confirms 

that the yaw rate model is inadequate unless a near–steady–state condition is achieved.  

This qualitatively confirms the conclusions from parameter and eigenvalue the observa-

tions. 
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Figure 5.15 Yaw Rate Model Parameters Compared to Corresponding Linear Contain-

ership Truth Model Parameter (λ = 0.99) 
 

 
Figure 5.16 Yaw Rate Model Eigenvalue Compared to Truth Model Sway and Yaw 

Eigenvalues (λ = 0.99) 



63

    

Yaw Rate Model (170 Seconds)   Linear Truth Model (170 Seconds) 

    

Yaw Rate Model (200 Seconds)   Linear Truth Model (200 Seconds) 

    

Yaw Rate Model (230 Seconds)   Linear Truth Model (230 Seconds) 

Figure 5.17 Yaw Rate Model Two Minute Path Prediction Compared to Truth Model 
Following 20 Degree Left Rudder Command 
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Yaw Rate Model (170 Seconds)   Linear Truth Model (170 Seconds) 

    

Yaw Rate Model (200 Seconds)   Linear Truth Model (200 Seconds) 

    

Yaw Rate Model (230 Seconds)   Linear Truth Model (230 Seconds) 

Figure 5.18 Yaw Rate Model Path Prediction with Modified Initial Condition Com-
pared to Truth Model Following a 20 Degree Left Rudder Command 
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2. Linear Sway–Yaw Model 

Parameter estimation and path prediction from the sway–yaw model was com-

pared to Fossen’s linearized sway–roll–yaw containership model.  The same truth model 

control inputs and excited states (Figure 5.14) were provided to the sway–yaw model as 

the yaw rate only model.  Sway–yaw model parameter estimation versus time is dis-

played in Figure 5.19.  The corresponding estimated control parameters were accurate 

and reasonably steady up to the series of rapid rudder shifts around 340 seconds.   The 

sway–yaw plant parameters were also reasonably steady up until the rapid control inputs.  

However, the parameters tended to be faster than their truth model counterparts.  This is 

due to the sway–yaw model capturing motion input from the faster truth model roll mode.   

The estimated sway–yaw model eigenvalues are compared to truth model eigen-

values in Figure 5.20.  The eigenvalues were fairly steady up until the high bandwidth 

rudder reversal.   The eigenvalues are somewhat faster than the truth model counterparts 

due to capturing of the faster roll mode influence.    

The steady nature of the predicted eigenvalues at low to medium control band-

widths makes this model suitable for path prediction in all but the most dynamic maneu-

vering situations.   

Figure 5.21 compares sway–yaw model path prediction snapshots to the full truth 

model at time equal to 170, 200 and 230 seconds, respectively.  The t = 170 seconds 

snapshot is shortly after commencing a 20 degree left rudder turn.  Path prediction is 

nearly identical to that obtained from the higher order truth model.  Clearly, sway–yaw 

model fidelity is sufficient to capture the majority of vessel motion for depiction of future 

vessel path.  However, a higher order sway–roll–yaw model is required if roll angle esti-

mation is required. 
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Figure 5.19 Sway–Yaw Model Parameters Compared to Corresponding Linear Con-

tainership Truth Model Parameters (λ = 0.99) 
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Figure 5.20 Sway-Yaw Model Eigenvalues Compared to Truth Model Sway and Yaw 
Eigenvalues 
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Sway–Yaw Model (170 Seconds)   Linear Truth Model (170 Seconds) 

    

Sway–Yaw Model (200 Seconds)   Linear Truth Model (200 Seconds) 

    

Sway–Yaw Model (230 Seconds)   Linear Truth Model (230 Seconds) 

Figure 5.21 Sway–Yaw Rate Model Two Minute Path Prediction Compared to Truth 
Model Following a 20–Degree Left Rudder Command 
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D. INVESTIGATION OF LINEAR MODEL MATCHING TO A NON-
LINEAR TRUTH MODEL 

Section C verified the suitability of both the sway–yaw and the sway–roll–yaw 

models for path prediction.  This section will extend those results to an evaluation of how 

well these linear motion models path predict despite underlying non-linear vessel motion.  

The non-linear Fossen containership model is used for truth data. 

The same series of control inputs is applied to the non-linear truth model as with 

the linear model used in Section C.  However, a lower level of excitation and different 

vessel path is obtained with the non-linear model.  In general, the non-linear model re-

sponse is lower in all the states at high control input levels.  Exponential forgetting was 

enabled in an attempt to capture the non-linear motion through linear model adaptation. 

The system was initialized to the settings in Table 5.4.  Figure 5.22 displays the control 

inputs and states that stimulated the linear sway–yaw and sway–roll–yaw parameter esti-

mation models.  

 

Parameter Setting 

Truth Data Non-Linear Containership Model – Uo = 7 m/s 

Truth Model Time Step 0.2 s (RK2 Integration) 

RLS/ELS – v-p-r Model ELS with v, p and r Bias Enabled 

RLS/ELS Time Step 0.2 s 

Exponential Forgetting 0.99 for v-p-r Model 

Directional Forgetting On 

Covariance Reset Auto @ cond Pvpr > 0.5 x 106, Pvpr = Pvpr + 10*I 

Surge Model Non-Linear Surge (λu = 0.995) 

 
Table 5.4 Settings for Investigation of Linear Model Matching to a Non-linear Truth 

Model 
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Figure 5.22 Vessel State Excitation for Investigation of Linear Model Matching to a 

Non-linear Truth Model  
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1. Linear Sway–Yaw Model Parameter Estimation from a Non-linear 
Truth Model 

Parameter estimation and path prediction from the sway–yaw model was com-

pared to Fossen’s non-linear surge–sway–roll-yaw containership model.  The control in-

puts and excited states are displayed in Figure 5.22.  Sway–yaw model parameter estima-

tion versus time is displayed in Figure 5.23 along with the non-linear model parameters 

linearized at Uo = 7 m/s.  The control parameters remain reasonably steady throughout 

the maneuvers, indicating probable good performance under steady–state conditions.  The 

sway and yaw plant parameters display more variation.  This indicates the exponential 

forgetting is attempting to adjust the linear model to the non-linear dynamics.  This is 

quite evident shortly after a steady 20–degree left rudder input is executed at 265 sec-

onds.  Most parameters require approximately 60 seconds to adjust to the new set of pa-

rameters for a steady 20–degree left rudder turn.  The parameters adjust again following a 

series of rapid rudder shifts around 340 seconds.    

The sixty–second adaptation window is reasonable based on the selected 

exponential forgetting time constant.  Table 3.1 indicates an exponential time constant of 

20 seconds given λ = 0.99 and ∆ = 0.2 sec.  Allowing three time constants to reach 

steady–state fits well with the observed 60-second parameter adaptation time.  The 

exponential forgetting factor will need to be reduced if faster parameter adjustment is 

desired.  The obvious fall out of increasing forgetting (smaller λ) is higher susceptibility 

to noise.  Path prediction snapshots following initiation of a sustained 20–degree left rudder 

turn are presented in Figure 5.25.  The path prediction snapshots are overlaid over the 

actual non-linear truth model path.  The path prediction at 170 seconds overestimates the 

turn performance. The prediction at 200 seconds is slightly improved.  The prediction at 

230 seconds is much improved and nicely overlays the actual path.  Roughly 60 seconds 

are required for the ELS algorithm to pick up the non-linear parameter shift.  This quali-

tative observation supports the expectations based on the parameter estimation behavior 

observed.  A sixty–second adjustment interval is relatively slow.  Especially when one 

recognizes that the model will take 60 seconds to adjust back to the linear parameters 

around the equilibrium point.  As a result, the useful bandwidth of the path prediction al-



72

gorithm is relatively narrow.  A reduced forgetting factor or addition of some non-

linearity in the model may produce improved results.  

 
Figure 5.23 Sway–Yaw Model Parameters Compared to Non-Linear Containership 

Parameters Linearized Around Uo = 7 m/s (λ = 0.99) 
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Figure 5.24 Sway–Yaw Model Eigenvalues Compared to Non-Linear Containership 

Eigenvalues Linearized Around Uo = 7 m/s (λ = 0.99) 
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Linear Sway–Yaw Model (170 sec)     Linear Sway–Yaw Model (200 sec) 

 

 

    

Linear Sway–Yaw Model (230 sec)  

 

Figure 5.25 Sway–Yaw Model Two Minute Path Prediction Compared to Truth Model 
Path Following a Steady 20–Degree Left Rudder Command 
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2. Linear Sway–Roll–Yaw Model Parameter Estimation from a Non-
linear Truth Model 

Parameter estimation and path prediction from the sway–roll–yaw model was 

compared to Fossen’s non-linear surge–sway–roll–yaw containership model.  The control 

inputs and excited states are displayed in Figure 5.22.  Sway–roll–yaw model parameter 

estimation versus time is displayed in Figure 5.26 along with the non-linear model pa-

rameters linearized around Uo = 7 m/s.  As with the sway–yaw model, the control pa-

rameters remain reasonably steady throughout the maneuvers, indicating probable good 

performance under steady–state conditions.  The one exception is the roll control parame-

ter.  A large fluctuation is evident during the rapid rudder reversals starting at 340 sec-

onds.  The sway, roll and yaw plant parameters display more variation than with the 

sway–yaw model.  This is expected when there are 15 degrees of freedom (parameters) in 

the sway–roll–yaw model versus six for the sway–yaw model.  Despite the greater varia-

tions in parameters, the eigenvalues remain well behaved.  The exponential forgetting 

factor will need to be reduced if faster parameter adjustment is desired.  The obvious fall 

out of increasing forgetting (smaller λ) is higher susceptibility to noise. 

Path prediction snapshots for the sway–roll–yaw model are presented in Figure 

5.27 for a sixty–second period following initiation of a 20–degree left rudder input.  The 

estimated path is overlaid on the actual path generated with the non-linear truth model.  

Results are nearly identical to the sway–yaw model.  Path prediction at 170 seconds over-

estimates the turn performance. The prediction at 200 seconds is slightly improved.  The 

prediction at 230 seconds is much improved and nicely overlays the actual path.  Roughly 

60 seconds are required for the ELS algorithm to pick up the non-linear parameter shift.  

As with the sway–yaw model, a sixty second adjustment interval is relatively slow, 

especially when considering another 60 seconds is required to adjust back to the 

parameters close to equilibrium.  As a result, the useful bandwidth of the linear path pre-

diction models is relatively narrow.  A reduced forgetting factor or addition of some non-

linearity in the model may produce faster results.  
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Figure 5.26 Sway–Roll–Yaw Model Parameters Compared to Non-Linear Container-
ship Parameters Linearized Around Uo = 7 m/s (λ = 0.99) 
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Figure 5.27 Sway–Roll–Yaw Model Eigenvalues Compared to Non-Linear Container-
ship Eigenvalues Linearized Around Uo = 7 m/s 



78

 

 

     

Linear Sway–Roll–Yaw Model (170 sec)     Linear Sway–Roll–Yaw Model (200 sec) 

 

 

    

Linear Sway–Roll–Yaw Model (230 sec)  

 

Figure 5.28 Sway–Roll–Yaw Model Two Minute Path Prediction Compared to Truth 
Model Path Following a Steady 20 Degree Left Rudder Command 
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E. VERIFICATION OF CURRENT AND SENSOR BIAS ESTIMATION 

This section verifies the correct estimation of current and sensor biases.  Sensor 

biases observability is limited to roll angle and rudder angle.  Rate sensor biases are not 

observable.  However, this is not a limitation provided that the rate data is obtained from 

an accurate inertial platform.  Differentiating angle measurements will also generate un-

biased data.  In general, the estimation algorithms worked well.  Sensor bias estimates 

drifted during high bandwidth control inputs due to inaccurate parameter estimates.  

However, the overall system maintained accurate path prediction despite the drifting es-

timates of the biases.  A standard series of rudder input excitation was applied to lin-

earized sway–roll–yaw model for approximately 500 seconds.  Exponential forgetting 

was enabled.  The system was initialized to the settings in Table 5.5 and Figure 5.29 dis-

plays the control inputs and states from the linearized containership truth model.  

 

Parameter Setting 

Truth Data Linearized Containership Model – Uo = 7 m/s 

Truth Model Time Step 0.2 s (RK2 Integration) 

RLS/ELS – v-p-r Model ELS with v, p and r Bias Enabled 

RLS/ELS Time Step 0.2 s 

Exponential Forgetting 0.99 for v-p-r Model 

Directional Forgetting On 

Covariance Reset Auto @ cond Pvpr > 0.5 x 106, Pvpr = Pvpr + 10*I 

Surge Model Constant Surge Speed (u[k] = u[k – 1]) 

Roll Angle Bias -2. ° 

Rudder Angle Bias 1.5° 

Current Set: 290° @ 1.5 knots 

 
Table 5.5 Settings for Investigation of Current and Sensor Biases 
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Figure 5.29 Vessel States for Verification of Current and Sensor Biases 
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1. Verification of Current Estimation 

Current is estimated with a simple moving average filter.  The difference between 

inertial and through–the–water velocity is averaged across five measurements.  Meas-

urements are restricted to low rudder deflection and turn rate situations.  This prevents 

feedback between current estimation and parameter estimation during dynamic maneu-

vers.    

The linear sway–roll–yaw model was fed data generated from the linear contain-

ership model.  Control inputs and states are displayed in Figure 5.29.  A current of 290° 

set (direction current is going) and 1.5 knot drift (velocity) was injected into the simula-

tion.  Current was held constant through the test.  The current filter immediately calcu-

lated a set of 290.02° and drift of 1.50 knots and remained there for the rest of the data 

run.  This confirmed the current estimation algorithm in a noise–free environment.  Fig-

ure 5.30 displays parameter estimation progress and Figure 5.31 displays eigenvalue es-

timation versus time.  Both are similar to the no–current situation (Figures 5.8 and 5.9).  

This confirms that a constant current does not effect parameter estimation.   

Snapshots of path prediction with current at 170, 200 and 230 seconds are dis-

played in Figure 5.32.  The snapshots on the left are with current set to 290° and 1.50 

knots.  The set of snapshots on the right are from the identical no–current situation.  The 

same commands were provided to both simulations.  The lateral displacement of the ac-

tual track line and distortion of the 360° turn in the left hand series of snapshots confirm 

proper implementation of current in the simulation routine.  The close overlay of the pre-

dicted and actual paths indicates proper current estimation and path prediction.   
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Figure 5.30 Sway–Roll–Yaw Parameter Estimation with Current Compared to Linear 
Containership Parameters (Uo = 7 m/s) (λ = 0.99) 
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Figure 5.31 Sway–Roll–Yaw Eigenvalue Estimation with Current Compared to Linear 
Containership Eigenvalues (Uo = 7 m/s) 



84

    

With Current – 290°/1.5 knt (170 sec)  No Current Truth Model (170 sec) 

    

With Current – 290°/1.5 knt (200 sec)  No Current Truth Model (200 sec) 

    

With Current – 290°/1.5 knt (230 sec)  No Current Truth Model (230 sec) 

Figure 5.32 Path Prediction with Current Estimation Compared to Truth Model with-
out Current (Constant 20–Degree Left Rudder Command) 
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2. Verification of Rudder and Roll Angle Bias Estimation 

Rudder and roll angle error is modeled in the ELS algorithm as a slowly varying 

bias term.  The sway, roll and yaw models each have a bias term which is an aggregate of 

roll and rudder angle measurement error and environmental disturbances.  For this test, 

no environmental disturbances were introduced, leaving the biases a combination of rud-

der and roll angle error.  Estimation of the individual biases is not important to path pre-

diction.  However, specific estimation of roll and rudder error is interesting for verifica-

tion purposes.  A few lines of code were added to the Parameter Estimation Module to 

isolate and output estimated roll and rudder angle bias.  Combinations of the two biases 

were contained in three independent equations.  Three equations and two unknowns cre-

ates an over specified situation, so a least–squares fit was selected.   

Figure 5.33 displays the progress of bias estimation with an actual –2.0° roll and 

+1.5° rudder error.  Initial convergence is reached by 130 seconds and both bias estimates 

are well behaved and accurate up until the high bandwidth rudder reversals commencing 

at 340 seconds.  During the rapid rudder reversals, rudder bias estimation reaches +5° or 

a 3° error.  The estimated roll angle bias reaches almost –3° versus –2.0° actual.  After 

the dynamic maneuvering, the bias estimation settles close to the actual values.  Figures 

5.34 and 5.35 demonstrate that parameter estimation and eigenvalue estimation are unaf-

fected by the introduction of the biases.  The parameter and eigenvalue convergence is 

similar to the no bias case shown in Figures 5.8 and 5.9 

Snapshots of path prediction with and without rudder and roll bias are displayed 

in Figure 5.36.  The close overlay of the predicted and actual paths indicates proper bias 

estimation and path prediction.   
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Figure 5.33 Roll and Rudder Angle Bias Estimation (λ = 0.99) 
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Figure 5.34 Sway–Roll–Yaw Parameter Estimation with Simulated –2° Roll Bias and 
+1.5° Rudder Bias Compared to Linear Containership Parameters (Uo = 7 m/s) (λ = 0.99) 
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Figure 5.35 Sway–Roll–Yaw Eigenvalue Estimation with Simulated –2° Roll Bias and 
+1.5° Rudder Bias Compared to Linear Containership Eigenvalues (Uo = 7 m/s) 
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With Roll/Rudder Bias (170 sec)   No Bias Truth Model (170 sec) 

    

With Roll/Rudder Bias (230 sec)   No Bias Truth Model (230 sec) 

    

With Roll/Rudder Bias (405 sec)   No Bias Truth Model (405 sec) 

Figure 5.36 Path Prediction with Bias Estimation Compared to Truth Model without 
Bias 
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F. SURGE PARAMETER ESTIMATION VERIFICATION  

Up until now, there has been little discussion of the surge estimation algorithm 

because most of the sway–roll–yaw model suitability investigation was performed using 

a constant surge velocity truth model (u[k] = u[k – 1]).  Surge parameter estimation re-

quires verification prior to processing sea trials data under real–world conditions.   

The non-linear surge equation parameter estimation algorithm was verified using 

the non-linear containership model.  Satisfactory performance is indicated by parameter 

convergence and stability.  Unfortunately, direct comparison with the actual parameters 

in the containership model is not possible.  The non-linear, linear in parameter surge 

equation is a different model structure than the NL Fossen containership model.  How-

ever, parameter convergence and subjective observation of path prediction indicates the 

selected model demonstrates sufficient fidelity for path prediction. 

The system was initialized to the settings in Table 5.6.  Control inputs and states 

for driving surge parameter verification are displayed in Figure 5.37.  Converged surge 

equation parameters are shown in Figure 5.38.  The parameters settled down by t = 225 

seconds and remained relatively stable through the long 20–degree left rudder input.  At    

t = 340 seconds, simultaneous large RPM transients and rudder reversals caused addi-

tional parameter convergence.  The parameters then remained stable for the rest of the 

data run.  Subjective observation of the predicted path indicates good performance.   



91

 

 

 

 

 

 

 

Parameter Setting 

Truth Data Non-Linear Containership Model – Uo = 7 m/s 

Truth Model Time Step 0.2 s (RK2 Integration) 

RLS/ELS – v-p-r Model ELS with v, p and r Bias Enabled 

RLS/ELS Time Step 0.2 s 

Exponential Forgetting 0.99 for v-p-r Model 

Directional Forgetting On 

Covariance Reset Auto @ cond Pvpr > 0.5 x 106, Pvpr = Pvpr + 10*I 

Surge Model Non-Linear Surge (λu = 0.995) 

 
Table 5.6 Settings for Investigation of Surge Parameter Estimation 
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Figure 5.37 Vessel States for Verification of Surge Parameter Estimation 
 



93

 

 

Figure 5.38 Surge Parameter Estimation Driven by Truth Data from Fossen Non-linear 
Containership Model (λ = 0.99) 
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G. PATH PREDICTION PERFORMANCE USING SEA TRIALS DATA 

After verification of the basic algorithms, overall system performance was evalu-

ated using real–world data from the USCGC HEALY (WAGB 20) Performance and Sea 

Trials [Ref. 5].  Parameter estimation and path prediction results are presented for the 

“4030” data file.  The “4030” data file contains approximately 450 seconds of vessel 

states during a series of 50° zigzags using 20° of rudder at maximum speed (16 knots).  

This data file was chosen because it provides sufficient excitation to allow parameter 

convergence in a reasonable time.  The system was initialized to the settings in Table 5.7.  

The control inputs and states are displayed in Figure 5.39.  The actual vessel path is dis-

played in Figure 5.40.  It is important to note that the USCGC HEALY sea trials were 

conducted in the open Gulf of Mexico.  However, the data are overlaid on an available 

Chesapeake Bay approach electronic chart image.  The image pixels were remapped to 

remove latitude distortion.   Two sets of results are presented.  The first results are based 

on unfiltered raw data.  The second results are based on a low–pass filtered version of the 

same data file (4–parameter FIR filter: Fc = 0.2 Hz).  

 

Parameter Setting 

Truth Data USCGC HEALY (WAGB 20) – “4030” Data File 

Truth Model Time Step 1.0 Hz (Actual Vessel Data) 

RLS/ELS – v-p-r Model ELS with v, p and r Bias Enabled 

RLS/ELS Time Step 1 Hz 

Exponential Forgetting 0.995 for v-p-r Model 

Directional Forgetting On 

Covariance Reset Auto @ cond Pvpr > 0.5 x 106, Pvpr = Pvpr + 10*I 

Surge Model Non-Linear Surge (λu = 0.995) 

 
Table 5.7 Settings for USCGC HEALY Sea Trials Evaluation 
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Figure 5.39 USCGC HEALY “4030” Maneuver Unfiltered States 
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Figure 5.40 USCGC HEALY “4030” Maneuver Overlaid on Navigational Chart 

 

1. Parameter Estimation and Path Prediction Using Unfiltered “4030” 
Data File 

This first set of results is based on allowing the sway–roll–yaw ELS algorithm to 

process noisy, unfiltered 1–Hz data from the USCGC HEALY “4030” file.  The data set 

includes noise generated by differentiating angle states into angle rates.   

a. Sway-Roll-Yaw Parameter Estimation and Path Prediction Using 
Unfiltered “4030” Data File 

ELS sway–-roll–yaw parameter estimation is displayed in Figure 5.41 for 

the first pass of the unfiltered “4030” data file.  Estimation progress is considerably 

slower than previous examples using math model truth data.  The primary difference in 

convergence rates is probably due to the slow 1–Hz sea trials data rate versus the 5–Hz 

math model rate.  In addition, the sea trials data is corrupted by real–world noise, includ-

ing measurement and environmental noise.   

A second pass of the “4030” data file was made using the parameters and 

covariance from the end of the first pass as the initialization point.  The primary objective 

of the second pass was to investigate parameter and eigenvalue stability.  Parameter esti-

mation during the second pass is displayed in Figure 5.42.  The parameters remained rea-

sonably steady following initial convergence from the first pass, indicating a good match 

with the data.   
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Eigenvalue convergence is depicted in Figures 5.43 and 5.44.  The eigen-

values begin to stabilize towards the end of the first data run. However, the complex (os-

cillatory) roll mode eigenvalues never really form.  It appears that the parameter estima-

tion algorithm started tracking the high frequency noise in the unfiltered roll and yaw rate 

terms instead of the oscillatory rolling motion.  This is evidenced by the very high a′34 

yaw rate due to roll angle term.  The roll mode eigenvalues continue to be split and real 

in the second pass. 

The roll and rudder bias terms are displayed in Figures 5.45 and 5.46.  

Bias values are reasonably steady after initial parameter convergence.  Steady biases in-

dicate a reasonable fit of the linear v–p–r model to the non-linear sea trials data.  The 

fairly steady –2.5° rudder bias is a combination of sensor bias and the tendency of the 

vessel to weathercock into the wind (020° true at 5 knots). 

Covariance matrix trace and condition data are displayed in Figures 5.47 

and 5.48.  The sway–roll–yaw covariance matrices are well behaved with no significant 

creep in the trace or condition numbers.  Noise excitation appears beneficial for limiting 

covariance growth. The trace and condition numbers for each degree of freedom are bet-

ter behaved than in the previous runs using noise free math model truth data.   

Path estimation snap shots are displayed in Figure 5.49.  The first and sec-

ond passes are compared side by side at identical times.  The first snapshot at t = 267 

seconds depicts path prediction just as the rudder reaches left 20°.  The second snapshot 

at t = 282 seconds depicts path prediction progress 15 seconds later.  Snapshots for both 

data passes indicate nice path prediction.  Very little qualitative difference is observed 

between the first and second passes.  This indicates that suitable path prediction may be 

achieved prior to parameter convergence. 
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Figure 5.41 First Pass Sway–Roll–Yaw Parameter Estimation using Unfiltered 
USCGC HEALY “4030” Data File (Uo = 8 m/s) (λ = 0.995) 
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Figure 5.42 Second Pass Sway–Roll–Yaw Parameter Estimation using Unfiltered 
USCGC HEALY “4030” Data File (Uo = 8 m/s) (λ = 0.995) 
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Figure 5.43 First Pass Sway–Roll–Yaw Eigenvalue Estimation using Unfiltered 
USCGC HEALY “4030” Data File (Uo = 8 m/s) 
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Figure 5.44 Second Pass Sway–Roll–Yaw Eigenvalue Estimation using Unfiltered 
USCGC HEALY “4030” Data File (Uo = 8 m/s) 
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Figure 5.45 First Pass Rudder and Roll Angle Bias Estimation using Unfiltered 

USCGC HEALY “4030” Data File (Uo = 8 m/s) 

 

 
Figure 5.46 Second Pass Rudder and Roll Angle Bias Estimation using Unfiltered 

USCGC HEALY “4030” Data File (Uo = 8 m/s) 
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Figure 5.47 Trace and Condition Number of Covariance Matrices Following First Pass 
of Unfiltered “4030” Data File 
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Figure 5.48 Trace and Condition Number of Covariance Matrices Following Second 
Pass of Unfiltered “4030” Data File 
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1st Pass (t = 267 sec)  2nd Pass (t = 282 sec) 

 

 

   

1st Pass (t = 267 sec)  2nd Pass (t = 282 sec) 

 
Figure 5.49 USCGC HEALY Zig-Zag Path Prediction for First and Second Pass of 

Unfiltered “4030” Data File 
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b. Surge Parameter Estimation Using Unfiltered “4030” Data File 

Non-linear surge equation parameter identification was also evaluated 

while processing the unfiltered “4030” data file.  The states involved are displayed in 

Figure 5.50.  Notice the independent nature of shaft RPM for the twin–screw vessel.    

Surge parameter estimation for pass one and two of the “4030” data file is 

displayed in Figures 5.51 and 5.52 respectively.  The parameters do not remain as steady 

as for the sway–roll–yaw models.  The nice path prediction in Figure 5.49 indicates good 

performance despite drifting surge equation parameters.   

Drifting surge parameters could be due to a number of reasons.  First, 

there was very little excitation of the shaft RPM.  Other than some bogging down during 

the turns, the shaft RPM stayed close to the fixed 150 RPM command.  Second, there was 

no directional forgetting implemented in the surge RLS model.  Covariance and gain in-

creased during the initial non-maneuvering portion of the run, causing erratic parameter 

estimation during the start of maneuvering.  Directional forgetting should be added the 

surge equation algorithm.  Another problem may be that the surge algorithm only imple-

ments RLS.  ELS should be added to better control real–world noise.   
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Figure 5.50 Unfiltered “4030” Vessel States for Surge Parameter Estimation 
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Figure 5.51 Surge Parameter Estimation Following First Pass of Unfiltered “4030” 
Data File (λ = 0.995) 
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Figure 5.52 Surge Parameter Estimation Following Second Pass of Unfiltered “4030” 
Data File (λ = 0.995) 
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2. Parameter Estimation and Path Prediction Using Low–Pass Filtered 
“4030” Data File 

This second set of results is based on low–pass filtering data from the USCGC 

HEALY “4030” file in an effort to determine if preprocessing the data improves the pa-

rameter estimation and path prediction process.  The data set was pre-filtered by a 4–term 

Hamming FIR filter with a 0.2–Hz cutoff frequency.  A low–order filter was selected to 

provide some data smoothing without introducing unacceptable time delay.  The filtered 

states are displayed in Figure 5.53.  Note the large reduction in yaw rate noise compared 

to the unfiltered yaw rate in Figure 5.39 

a. Sway–Roll–Yaw Parameter Estimation and Path Prediction Us-
ing Low–Pass Filtered “4030” Data File 

ELS sway–roll–yaw parameter estimation for the first and second pass of 

the low–pass filtered “4030” data file is displayed in Figures 5.54 and 5.55, respectively.  

Parameter estimation convergence rate and stability are similar that of the unfiltered data 

file.  However, it is clear that the yaw rate terms are no longer tracking noise.  For the 

unfiltered data file, a′34 was on the order of 30 to 35.  After low–pass filtering the data, 

the a′34 term dropped to 4 to 7.   

Eigenvalue convergence is depicted in Figures 5.56 and 5.57.  The sway–

yaw eigenvalues show much improved stability to that of the unfiltered data runs.  After 

the initial 100 seconds, the sway–yaw modes break apart and stay unique.  Additionally, 

the oscillatory roll mode is well established.  Previously, the roll poles split apart and 

tracked the noise.  Now the roll mode stabilizes out.  Figure 5.57 clearly shows well-

developed stationary roll mode poles. 

The roll and rudder bias terms are displayed in Figures 5.58 and 5.59.  

Bias values are reasonably steady after initial parameter convergence indicating a reason-

able fit to the linear v–p–r model.  Interestingly, the FIR filtering reduced the average 

rudder bias from –2.5° to –1.5°.    

Covariance matrix trace and condition data are displayed for the first and 

second passes in Figures 5.60 and 5.61, respectively.  The sway–roll–yaw covariance ma-

trices are well behaved with no significant creep in the trace or condition numbers.  Co-
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variance collapse is slower for the low–pass filtered data file.  This confirms that noise is 

useful for keeping covariance bounded.   

Path estimation snap shots are displayed in Figure 5.62.  The first and sec-

ond passes are compared side by side at identical times.  The first snapshot at t = 267 

seconds depicts path prediction just as the rudder reaches left 20°.  The second snapshot 

at t = 282 seconds depicts path prediction progress 15 seconds later.  Both runs are very 

similar.  This indicates that the parameters that were still settling during the first pass had 

very little impact on path prediction.  Also, both runs over–predict the turn rate at t = 267 

seconds.  In fact, the prediction quality using the filtered data is worse at t = 267 seconds 

than for the unfiltered data.  However, in the next fifteen seconds, the filtered data path 

prediction settles down and provides superior results.  Additional investigation is required 

to determine why the filtered data provides a poorer prediction immediately after rudder 

input.  Perhaps there is time delay in the system or the 0.2–Hz cutoff frequency was inap-

propriate.   

In general, processing low–pass filtered data removed the tendency of the 

parameter estimation algorithm to track noise.  However, the initial path prediction accu-

racy suffered compared to unfiltered data.  The filtered data provided superior path pre-

diction by 15 seconds into the turn.  Alternative filter settings should be investigated to 

improve the initial response. 
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Figure 5.53 USCGC HEALY “4030” Maneuver States Following Low–Pass Filtering 
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Figure 5.54 First Pass Sway–Roll–Yaw Parameter Estimation using Low–Pass Filtered 
USCGC HEALY “4030” Data File (Uo = 8 m/s) (λ = 0.995) 
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Figure 5.55 Second Pass Sway–Roll–Yaw Parameter Estimation using Low–Pass Fil-
tered USCGC HEALY “4030” Data File (Uo = 8 m/s) (λ = 0.995) 
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Figure 5.56 First Pass Sway–Roll–Yaw Eigenvalue Estimation using Low–Pass Fil-
tered USCGC HEALY “4030” Data File (Uo = 8 m/s) 
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Figure 5.57 Second Pass Sway–Roll–Yaw Eigenvalue Estimation using Low–Pass Fil-
tered USCGC HEALY “4030” Data File (Uo = 8 m/s) 
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Figure 5.58 First Pass Rudder and Roll Angle Bias Estimation using Low–Pass Fil-
tered USCGC HEALY “4030” Data File (Uo = 8 m/s) 
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Figure 5.59 Second Pass Rudder and Roll Angle Bias Estimation using Low–Pass Fil-
tered USCGC HEALY “4030” Data File (Uo = 8 m/s) 
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Figure 5.60 Trace and Condition Number of Covariance Matrices Following First Pass 
of Low–Pass Filtered “4030” Data File 
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Figure 5.61 Trace and Condition Number of Covariance Matrices Following Second 
Pass of Low–Pass Filtered “4030” Data File 
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1st Pass (t = 267 sec)  2nd Pass (t = 267 sec) 

 

   

   

1st Pass (t = 282 sec)  2nd Pass (t = 282 sec) 

 
Figure 5.62 USCGC HEALY Zig-Zag Path Prediction for First and Second Pass of 

Low–Pass Filtered “4030” Data File 
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b. Surge Parameter Estimation Using Low–Pass Filtered “4030” 
Data File 

Non-linear surge equation parameter identification was also performed 

while processing the filtered “4030” data file.  The states involved are displayed in Figure 

5.63.  Notice the reduced noise, especially in the yaw rate trace.  

Progress of the surge parameter estimation for passes one and two of the 

filtered “4030” data file is displayed in Figures 5.64 and 5.65, respectively.  Parameter 

convergence is similar to the unfiltered data set.   

 



123

 
 

Figure 5.63 Low–Pass Filtered “4030” Vessel States for Surge Parameter Estimation 
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Figure 5.64 Surge Parameter Estimation following First Pass of Low–Pass Filtered 
“4030” Data File (λ = 0.995) 
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Figure 5.65 Surge Parameter Estimation following Second Pass of Low–Pass Filtered 
“4030” Data File (λ = 0.995) 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. GENERAL CONCLUSIONS AND RECOMMENDATIONS 

Real–time recursive parameter identification was applied to surface vessel model-

ing for maneuvering path prediction.  An end-to-end system was designed to simulate 

vessel motion, identify parameters and estimate future path.  The data were then overlaid 

in real–time on an electronic chart image taking into account environmental conditions.  

The system uses extended least–squares (ELS) parameter identification for path predic-

tion rather than implementing a predetermined vessel model.  This approach allows the 

system to be installed on most platforms without prior knowledge of system dynamics 

provided appropriate vessel states are available.  In addition, the system continually tunes 

to actual environmental conditions, including vessel ballasting, current, wind and sensor 

biases.   

 Suitable path prediction performance was established in real–world maneuvering 

conditions.  Sufficient fidelity was demonstrated to recommend that maneuvering path 

prediction algorithms be incorporated into the Navy’s NAVSSI electronic charting sys-

tem.  Figure 6.1 illustrates how maneuvering path prediction improves bridge team situ-

ational awareness when compared to the currently implemented instantaneous velocity 

vector.  Vessel states and environmental data are readily available on most large naval 

vessels.  The NAVSSI system should have a module to process the data and provide a 

real–time depiction of a vessel’s future path over the ground.  

In addition to path prediction, the sway–roll–yaw model allows prediction of 

maximum roll angle during maneuvering.  Maximum roll angle prediction takes into ac-

count environmental conditions and removes the guesswork from selecting the maximum 

rudder angle available, thus enhancing carrier flight deck safety and improving opera-

tional effectiveness.  

Insufficient time was available to fully investigate pre-filtering vessel state data 

prior to parameter estimation.  Additional effort should be put into determining optimum 

noise filtering techniques and cutoff frequencies.   
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The next development step should be a real–time shipboard demonstration to ver-

ify utility to bridge watch standers.  Two modifications are required for real–time opera-

tion.  First, the Data Acquisition Module needs to be modified to accept a serial data 

stream from a sea trials data logging system.  Second, the Track Display Module should 

be interfaced with a real ECDIS charting and display program.  Several commercial off–

the–shelf software packages are available that can be driven by LabView through stan-

dard Windows interfaces. 

 

Predicted  
Path 

Instantaneous 
Velocity Vector 

Future 
Position 

(2 minutes)  

Current 
Position

Desired 
Path 

 
 

Figure 6.1 Path Prediction vs. Instantaneous Velocity Vector  
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B. SPECIFIC CONCLUSIONS AND RECOMMENDATIONS 

• The sway–roll–yaw and surge models implemented are sufficient for ma-

neuvering at fairly steady ahead bells (power settings).  A multiple model 

approach is required to expand the envelope to include backing, twisting 

or tug maneuvering.  

• Both the sway–yaw and sway–roll–yaw models are suitable for path pre-

diction.  The yaw rate only model was useful for predicting steady–state 

turn rate and radius, but unsuitable for maneuvering situations.  It is rec-

ommended that the sway–roll–yaw model be used in operational designs 

so maximum roll angle may be estimated in addition to vessel path.  

• The linear sway–roll–yaw parameter estimation model performed quite 

well.  However, there is room for improvement during high bandwidth 

control applications.  Adding non-linear, linear in parameter terms may be 

warranted.   

• The final configuration for the sway–roll–yaw ELS algorithm with condi-

tional updating, directional forgetting and covariance resetting proved 

quite robust, especially with the real–world, noisy sea trials data.  How-

ever, additional testing with longer data sets is warranted to verify stability 

during typical ocean passages.     

• Wind disturbance is currently implemented in the bias terms, limiting the 

validity to small displacements around the average heading.  It is recom-

mended that future versions implement a full wind disturbance model.  

Software hooks exist in the state vector to add a full wind model.   

• The USCGC HEALY sea trials data included sideslip velocity (v) from a 

Doppler transducer.  A sideslip state observer is needed on vessels without 

a sideslip Doppler transducer. 

• Further investigation of data pre-processing is warranted.  Some noise fil-

tering clearly improves eigenvalue prediction and stability.  The optimum 

technique and cutoff frequency is still to be determined. 
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• Additional testing is required to evaluate the surge equation model in real–

world conditions.  The data sets available from the USCGC HEALY sea 

trials were all captured at nearly constant power settings.  The model 

should be evaluated with throttle transients. 

• Real–time performance should be demonstrated during a large vessel sea 

trial.  The Data Acquisition Module will need to be modified to capture 

and condition real–time serial data from the sea trials instrumentation 

package.   

• Improved ECN functionality is required for a sea trials demonstration.  

The path prediction module will need to pass data to a commercial ECN 

module via the built-in LabView X-Windows interface. 

• Investigate the optimum display configuration. Consideration should be 

given to only displaying path prediction during significant maneuvering.  

In other words, a null zone may need to be implemented to prevent nui-

sance wandering of the path prediction display during routine course keep-

ing control inputs.  The instantaneous velocity vector should be displayed 

inside the null zone.   
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APPENDIX A.  VESSEL RIGID BODY DYNAMICS 

This Appendix amplifies the rigid body dynamics presented in Chapter II.  The 6–

DOF equations of motion are systematically reduced by eliminating degrees of freedom.  

Suitability of the reduced systems is discussed with respect to surface vessel navigation. 

All vessel models used in this research are derived from the rigid body equations 

of motion.  The 6–DOF equations motion are shown below in vector form [Ref. 1]: 

 RBRBRB v)v(CvM τ=+�  (A.1) 

where MRB is the rigid body inertial matrix, CRB is the Coriolis ( vϖ × ) and centripetal 

( ( )Grϖ ϖ× × ) matrix, ν is the body–fixed linear and angular velocity vector ( [u, v, w, p,  

q,  r]T ) and τ is the vector of external forces and moments ( [X, Y, Z, K, M, N]T ). 

From Equation A.1, the 6–DOF equations are expanded by terms [Ref. 1]:   

 ( )[ ] X)qpr(z)rpq(yrqxwqvrum GGG =++−++−+− ��� 22  (A.2) 

 ( )[ ] Y)rqp(xpqrz)pr(yurwpvm GGG =++−++−+− ��� 22  (A.3) 

 ( )[ ] Z)prq(yqrpx)qp(zvpuqwm GGG =++−++−+− ��� 22  (A.4) 

 ( ) ( ) ( )[ ] KurwpvzvpuqwymqrIIpI GGyzx =+−−+−+−+ ���  (A.5) 

 ( ) ( ) ( )[ ] MvpuqwxwqvruzmrpIIqI GGzxy =+−−+−+−+ ���  (A.6) 

 ( ) ( ) ( )[ ] NwqvruyurwpvxmpqIIrI GGxyz =+−−+−+−+ ���  (A.7) 

where X, Y, Z are hydrodynamic and external disturbance forces and K, M and N are hy-

drodynamic and external disturbance moments. 

A full 6–DOF motion model is appropriate in some circumstances, such as model-

ing the outside visual scene for a bridge simulator.  However, simplified models are gen-

erally used for surface navigation.  In fact, the primary objective of this thesis is to esti-

mate and display future vessel position on an electronic chart display system (ECDIS).  

By definition, an electronic chart is limited to depicting motion in the x–y tangent plane, 
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making a 2–DOF (u, r) or 3–DOF (u ,v, r) model appropriate.  However, in some cases it 

is useful to display roll angle information using a 4–DOF (u ,v, p, r) model.  A good ex-

ample is the display of maximum aircraft carrier roll angle expected during a maneuver.  

This could assist the Officer of the Deck (OOD) with restricting rudder movement during 

flight operations to prevent aircraft from sliding off the flight deck.  Other vessels have 

similar roll angle limitations and prediction of maximum roll angle during maneuvering 

may prove useful.  In general, pitch and heave motions can be ignored for surface naviga-

tion. 

The 6–DOF equations of motion are reduced to 4–DOF and simplified with the 

following assumptions: 

1) Vessel is symmetric around the x–z plane (Ixy = Iyz = yG = 0). 

2) Vessel has a homogeneous mass distribution. 

3) The body fixed origin is selected as [ ]0 T
G G Gr x z=  (Ixz = 0). 

4) Pitch and heave are ignored (q = w = 0). 

This yields four simplified non-linear equations: 

 ( ) exthydroGG XXprzrxvrum +=+−− 2�  (A.8) 

 ( ) exthydroGG YYpzrxurvm +=−++ ���  (A.9) 

 ( ) extThydroGz KGMWKurvmzpI +−=+− φ��  (A.10) 

 ( ) exthydroGz NNurvmxrI +=++ �� . (A.11) 

Note:  The sway–roll–yaw equations decouple from the surge equation when small per-

turbations are assumed.  Surge velocity (u) is replaced by a mean forward speed (U0). 
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The 4–DOF state vector, including angles is as follows: 

  

u u
v v
p p

x and x
p

r r
r

φ

ψ

   
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. (A.12) 

The 4–DOF equations of motion are further reduced to 3–DOF by eliminating the 

roll axis (p = 0): 

 ( ) exthydroG XXrxvrum +=−− 2�  (A.13) 

 ( ) exthydroG YYrxurvm +=++ ��  (A.14) 

 ( ) exthydroGz NNurvmxrI +=++ �� . (A.15) 

The 3–DOF state vector, including angles is as follows: 
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The 3–DOF equations are reduced to 2–DOF by dropping sway motion (v = 0): 

 ( ) exthydroG XXrxum +=− 2�  (A.17) 

 exthydroGz NNurmxrI +=+� . (A.18) 

The 2–DOF state vector, including angles is as follows: 
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APPENDIX B.  SURFACE VESSEL DYNAMIC MODELS  

An overview of linear and non-linear surface vessel models is required to select 

appropriate plant models for recursive parameter estimation.  This appendix provides the 

background information for the vessel models presented in Chapter II.   

All models are based on small perturbation decoupling of the sway–yaw–roll 

modes from the surge equation.  The general goal is to find a model with slowly varying 

parameters that is valid over a large range of operating conditions.  Linear models are 

preferred; however, recursive parameter estimation can handle non-linear models that are 

linear in parameters [Ref. 2].  For the interested reader, Fossen [Ref. 1] provides an ex-

cellent compilation of dynamic models for both surface and sub-surface vessels.  His text 

provides the foundation for much of the following discussion on vessel modeling.  

The models represented are extendable to multi-shaft and multi-rudder vessels.  

However, simply appending additional inputs to the control vector (e.g.. 

[ ]1 2
T

R R Rδ δ δ= + ) does not provide suitable input for parameter estimation.  This is due to 

lack of independent, persistent excitation of the control inputs.  In other words, the rud-

ders and shafts are typically operated in tandem.  Heuristically, this means the recursive 

parameter estimator cannot determine which rudder is providing the control power.  The 

method used in this research is to add control inputs assuming linear superposition as fol-

lows:   

 1 1 2 2 3 3 4 4n n n n n n n n n n= + + +  for multi–shaft vessels (B.1) 

 21 RRR δδδ +=  and 2
2

2
1

2
RRR δδδ +=  for multi–rudder vessels. (B.2) 

These simplifications create limitations.  For instance, summing shaft RPM 

squared for a multi–shaft vessel will not allow the parameter estimator to resolve the 

“twisting” effect of differential engine orders.  However, the nice convergence of control 

parameters more than offsets limitations during infrequent, non-tandem control inputs.  
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A. STEERING EQUATIONS 

This thesis studies the suitability of three linearized steering (sway–roll–yaw) 

models for vessel path prediction.  As discussed earlier, sway–roll–yaw motion is de-

coupled from surge using small perturbation theory.  Surge velocity, u, is replaced by 

mean forward speed, U0.  The models are presented in order of increasing complexity. 

1. Nomoto 1st Order Steering Equations  

The simplest set of steering equations is Nomoto’s 1st order model.  It comes from 

the 2–DOF surge and yaw equations of motion.  Substituting u = U0 decouples the yaw 

equation from the surge equation:  

 NrumxrI Gz =+ 0� . (B.3) 

Rearranging and substituting steering time constant, 0umx/IT Gz=  and rudder 

gain )umx/(NK GR 0⋅= δ , yields the Nomoto’s 1st Order steering equation [Ref. 8]: 

 RKrrT δ=+�   (B.4) 

or  alternately: 

 RKT δψψ =+ ���  with r=ψ� . (B.5) 

Reorganized in state-space form ( uBxAx +=�  and xCy = ), Nomoto’s 1st Order 

model becomes: 
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  (Time constant form) (B.6) 

or: 
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  (Parameter form) (B.7) 

where: 
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


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 (B.9) 

 [ ]01=C  (B.10) 

  







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r
x

ψ
, ψ=y , and  Ru δ= . (B.11) 

The controllability matrix, U = [B  AB … An–1B], is full rank:  

 [ ]
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−
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ABBU . (B.12) 

The system is also observable with measured states ψ and δR.  The observability 

matrix, V = [C* A*C* … (A*)n–1C] is full rank: 

 
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=

10
01
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V . (B.13) 

Recursive parameter estimation is performed in discrete time.  As a result, the 

zero order hold (ZOH) discrete version of Equation B.7 with sampling interval ∆ is taken 

as: 

 [ ] [ ] [ ]kuGkxFkx +=+1  (B.14) 

where ∆+≈= ∆ AIeF A , ∆= BG , and ∆ is sample interval. 

Expanding Equation B.14 yields the following discrete version of Nomoto’s 1st 

Order model: 
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. (B.15) 

It is convenient to drop the known heading angle integration term 

( [ ] [ ] [ ]krkk ∆+=+ ψψ 1 ) for parameter estimation.  This reduces Equation B.15 to a lin-

ear, first–order parameter estimation problem: 
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 [ ] [ ] [ ]kgkrfkr Rδ+=+1 . (B.16) 

Vessel steady–state turn radius (R) is a useful planning parameter.  It is approxi-

mated with following relationship [Ref. 1]: 

 
r
UR ≅     (B.17) 

where 0
22 uvuU ≈+=  for the 2-DOF model.    

Solving Equation B.6 in steady–state ( 0=r� ) yields the first–order Nomoto ap-

proximation of turn radius: 

 
RK

u
R

δ
0≅ . (B.18) 

The simplicity of the Nomoto 1st Order model results in limitations.  On the good 

side, only heading angle (ψ) and rudder deflection (δR) need to be measured to implement 

the model.   However, the order reducing assumptions result in a loss of fidelity in two 

significant areas: 

1) Vessels typically exhibit 2nd order effects due to sway–yaw coupling.  How-

ever, the model only captures the dominant first–order behavior.  As a result, the Nomoto 

1st order model will not capture yaw rate overshoots during dynamic maneuvering and 

should be restricted to small rudder order yaw dynamics [Ref. 8]. 

2) The Nomoto 1st Order model exhibits slower frequency response than higher 

order models.  The Nomoto’s 1st Order time constant, T, is approximately an aggregate of 

higher order model time constants.  Referring to the three time constants in Nomoto’s 2nd 

Order model (presented in section 2), T is approximated by  1 2 3T T T T= + −  [Ref. 1].  

Thus, the model is only suitable for predicting steady–state response and mild, low fre-

quency maneuvering.  

2. 2nd  Order Steering Equations  

A second–order sway–yaw model is obtained from the 3–DOF equations of mo-

tion.  The sway–yaw equations are decoupled from surge by assuming small perturba-

tions around a mean forward speed (u = U0):   
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 ( ) exthydroG YYrxruvm +=++ �� 0  (B.19) 

 ( ) exthydroGz NNruvmxrI +=++ 0�� . (B.20) 

Placing the body axis origin at the center of gravity (xG = 0) and substituting the 

first–order Taylor series expansion hydrodynamic terms yields the following sway–yaw 

equations [Ref. 8]: 

 ( ) RRrrvv YrYrYvYvYruvm δδ++++=+ ��� ��0  (B.21) 

 RRrrvvz NrNrNvNvNrI δδ++++= ��� �� . (B.22) 

Placing Equations B.21 and B.22 in state space form ( ) RbvuNvM δ=+ 0�  yields 

the Nomoto model: 
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The terms of Equation B.23 may be rearranged in the more familiar uBxAx +=�  

and xCy = format: 
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where:         
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 [ ]100=C  (B.27) 

 21 RRR δδδ +=  for multiple rudder vessels (B.28) 

with the coefficients: 
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z r v r vI N Y Y N
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a

( M )
− − +

= � �  (B.30) 

 ( )
21 det 

v v v vm Y N N Y
a

( M )
− +

= � �    (B.31) 

 ( ) ( )0
22 det 

v r v rm Y N N Y mu
a

( M )
− + −

= � �  (B.32) 

 ( )
1 det 

z r rI N Y Y N
b

( M )
δ δ− +

= � �  (B.33) 

 ( )
2 det 

v vm Y N N Y
b

( M )
δ δ− +

= � �  (B.34) 

 ( )( )det v z r v r( M ) m Y I N N Y= − − −� � � � . (B.35) 

A version of this system without the body axis restricted to the center of gravity 

(xG ≠ 0), is presented by Davidson and Schiff (1946) [Ref. 1]: 
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This model reduces to the same state space structure as Equation B.24.  However, 

the individual coefficients are as follows: 

  ( ) ( )
11 det 

z r v G r vI N Y mx Y N
a

( M )
− − −

= � �      (B.37) 
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 ( )( ) ( )( )0 0
12 det 
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 ( )( ) ( )( )0 0
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 ( )( ) ( )( )det v z r G v G r( M ) m Y I N mx N mx Y= − − − − −� � � � . (B.43) 

All parameters are observable and may be estimated provided the sway and yaw time 

constants are different [Ref. 1].  

Both the Nomoto and Davison/Schiff coupled sway–yaw state space models re-

duce to the following linear system in discrete time: 
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As with the first–order steering equation, it is convenient to drop heading angle 

integration ( [ ] [ ] [ ]krkk ∆+=+ ψψ 1 ) for parameter estimation leaving the following dis-

crete model: 
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Note that yaw angle (ψ) may be dropped due to a lack of coupling between yaw 

angle and yaw rate.  

Many ships do not have Doppler transducers for the accurate measurement of 

sway velocity (v).  In 1957, Nomoto proposed a modified second–order steering equation 
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by dropping sway velocity.  This yields a yaw rate to rudder order transfer function of 

[Ref. 1]: 

 
( )

( )( )sTsT
sTKr R

R 21

3

11
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++
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=
δ

    or    ( ) ( )RRR TKrrTTrTT δδ ���� 32121 +=+++ . (B.46) 

Substituting ψ�=r into Equation B.46 yields the heading equation: 

 ( ) ( )RRR TKTTTT δδψψψ ������� 32121 +=+++  (B.47) 

where the time constants and rudder gain are taken from the Davidson and Schiff model 

elements (Equation B.36): 
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Placing Equation B.47 in uBxAx +=� state space form yields: 
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In discrete time, using the ZOH approximation, Nomoto’s 2nd Order model be-

comes:  
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Nomoto’s 2nd Order model captures dynamic overshoot in yaw rate and demon-

strates improved frequency response when compared to the Nomoto’s 1st Order model.  

However, accurate measurement of the states could prove problematic for parameter es-
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timation.  A state observer is required to generate ψ��  from heading measurement (ψ ).  

Typically, double differentiation produces undesirable noise.  One solution would be to 

capture ψ�  and ψ��  from an inertial measuring unit (IMU).  IMUs are an integral compo-

nent of the Ship’s Inertial Navigation System (SINS) installed on all large US Navy ves-

sels. 

3. Coupled Sway–Roll–Yaw Steering Equations  

A coupled sway–roll–yaw model is obtained from the 4–DOF equations of mo-

tion.  The sway, roll and yaw equations are decoupled from surge by assuming small per-

turbations around a mean forward speed (u = U0):   

 ( ) exthydroGG YYpzrxruvm +=−++ ��� 0  (B.54) 

 ( ) extThydroGz KGMWKruvmzpI +−=+− φ0��  (B.55) 

 ( ) exthydroGz NNruvmxrI +=++ 0��  (B.56) 

Christensen and Blanke proposed the following non-linear model based on Equa-

tions B.54 through B.56 [Ref. 1]: 
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Linearizing the model around a mean forward speed (U0), yields the following 

state space model structure where x = [v r p φ ψ]: 
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If the state vector is rearranged to x = [v r ψ  p φ], the model takes the alternate form: 
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Notice that Equation B.59 may be represented in block diagonal form as: 

 Rb
b

x
x

AA
AA

x
x

δ
φ

ψ

φ

ψ

φφφψ

ψφψψ

φ

ψ








+
















=








�
�

. (B.60) 

This representation is convenient for illustrating the roll coupling effects contained in Aφψ 

and Aψφ .  The previously discussed linear sway–yaw model is simply the dynamics con-

tained in the upper left block (Aψψ). 

The state space model in Equation B.59 is reduced for parameter estimation by 

eliminating heading integration ( r=ψ� ): 
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Roll angle must be kept as a parameter.  This is due to the coupling of roll angle to roll 

moment.  In the sway–yaw model, yaw angle (ψ) was dropped due to lack of coupling 

between yaw rate and yaw angle.   
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The discrete–time state space representation of Equation B.61 is: 
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Dropping roll angle integration ( [ ] [ ] [ ]kpkk ∆+=+ φφ 1 ), the discrete–time sys-

tem used for parameter estimation becomes: 
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Notice that the plant matrix is no longer square. This is easily accommodated in the RLS 

and ELS algorithms.  The states are also reordered to correspond to the state vector order, 

[u v p r φ ψ …], used in the Data Acquisition and Parameter Estimation modules.  

Neglecting roll angle influence on the sway–yaw equations can further reduce the 

system.  Thus, the minimum parameter, sway–roll–yaw model is represented below: 
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The discrete–time the model with states reordered to correspond to the Data Ac-

quisition and Parameter Estimation module state vector, [u v p r φ ψ …], becomes: 
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B. THE SPEED EQUATION 

A single non-linear equation is used to model vessel surge motion.  Linear surge 

models are available, but they are only valid for small ranges around the trimmed vessel 

speed.  As a result, multiple linear trim points are required to model a typical vessel speed 

range.  Assuming u, v and r are observable vessel states; it is relatively straightforward to 

develop a non-linear speed equation that is linear in parameters.   

The 3–DOF surge equation, A.13, is the starting point for this study.  Pitch, roll 

and heave motions are ignored, leaving the x–direction hydrodynamic forces a function 

of u, v, r, δR and Thrust:   

 ( ) ( ) extRhydroG XT,,r,v,uXrxvrum +=−− δ2� . (B.66) 

The non-linear model of Blanke (1981) suggests the following parameterization 

[Ref. 1]: 

 ( ) ( ) lossuuu TTtuuXuXm +++=− 1��  (B.67) 

 ( ) ( ) extRrrGvrloss XXrXmxvrXmT +++++= 22 δδδ . (B.68) 

For the purposes of parameter estimation, the thrust reduction term (t) is consid-

ered constant around the cruise power setting and propeller thrust is assumed to be pro-

portional to shaft RPM squared in steady–state cruise.  Dividing both sides by the mass 

and added mass term ( am X+ ) yields the following approximated, non-linear surge equa-

tion that is linear in parameters: 

 nnbbravrauuau R 2
2

1
2

321 ++++= δ�  (B.69) 
 

where:  

 Thrust ∝ n2 and n ≅ Trim RPM (B.70) 

 1 1 2 2 3 3 4 4n n n n n n n n n n= + + +  for multi shaft vessels (B.71) 

 2
2

2
1

2
RRR δδδ +=  for multi rudder vessels. (B.72) 
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Recursive parameter estimation is performed in discrete–time using the ZOH ap-

proximation of Equation B.69: 
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Note the addition of [ ]1f u k  to create a discrete–time equation in the form:  

[ ] [ ] TermsDragTermsThrustkufku ++=+ 11 . (B.74) 
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APPENDIX C.  NON-DIMENSIONAL PARAMETERIZATION 

This appendix describes the Prime system for obtaining non-dimensional vessel 

coefficients.  It is useful to normalize model parameters with respect to vessel speed.  

This creates constant coefficients over a wide range of operating conditions.  Several sys-

tems of normalization exist, but the most common is the Prime system.   Table C.1 dis-

plays the normalization parameters for the Prime – I ( ′ ) and Prime – II  ( ′′ ) systems 

[Ref. 1].  The length, L, is equal to the distance between the fore and aft perpendiculars 

and U is the instantaneous speed.  The major difference between the Prime – I and Prime 

– II systems is the use of a reference area (L*T) in the Prime – II system.  This is analo-

gous to normalization by wing area in aerodynamics.  For consistency, all normalization 

in this thesis uses the Prime – I system. 

 

Unit Prime System I Prime System II 

Length L L 

Mass ρL3/2 ρL2T/2 

Inertia Moment ρL5/2 ρL4T/2 

Time L/U L/U 

Reference Area L2 LT 

Position L L 

Angle 1 1 

Linear Velocity U U 

Angular Velocity U/L U/L 

Linear Acceleration U2/L U2/L 

Angular Acceleration U2/L2 U2/L2 

Force ρU2L2/2 ρU2LT/2 

Moment ρU2L3/2 ρU2L2T/2 
 

Table C.1 Normalization Parameters for the Prime Systems [From Ref. 1] 
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APPENDIX D.  DISCRETE SYSTEM INTEGRATION TECHNIQUES 

This appendix describes numerical integration techniques that range in fidelity 

and computational cost.  Numerical integration is required to obtain discrete–time sam-

ples from continuous–time math models.  Table D.1 summarizes three popular algorithms 

and the corresponding truncation error.  The Data Acquisition module uses the Runge–

Kutta 2nd Order algorithm to generate simulated vessel data.  Note that surface vessels 

typically display light damping in the roll mode.  Any open–loop integration of models 

with a roll mode should use the Runge–Kutta 2nd Order or higher techniques.  Fossen 

[Ref. 1] covers each method and corresponding stability region in detail. 

 
    
Technique Method Truncation 

Error 
Comments 

    
Forward Euler [ ] [ ] ( ) ( )( )ku,kxfhkxkx +=+1  O(h) Poor results for 

lightly damped sys-
tems. 
 
Lowest cost. 

    
Runge–Kutta  
2nd Order 

( ) ( )( )
( ) ( )( )

[ ] [ ] ( )21

12

1

2
1 kkhkxkx

ku,hkkxfk
ku,kxfk

++=+

+=
=

 
O(h2) Improved stability. 

 
Moderate cost. 

    
Runge–Kutta  
4th Order 

( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

[ ] [ ]

( )4321

34

23

12

1

22
6
1

1
2
2
2

kkkk

kxkx
ku,kkxfhk
ku,kkxfhk
ku,kkxfhk

ku,kxfhk

+++

+=+
+=
+=
+=

=

…

…

 

O(h4) Large region of sta-
bility. 
 
Will work with 
lightly damped sys-
tems. 
 
High cost. 

 
Table D.1 Discrete Integration Techniques [From Ref. 1] 
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APPENDIX E. USCGC HEALY DATA PARAMETERS 

Table E.1 lists the data parameters, source, units and resolution available from the 

USCGC HEALY Performance and Special Sea Trials Data set. 

PARAMETER SOURCE UNITS RESOLUTION 
HEADING SHIP GYRO DEG 0.1 
ROLL SHIP MMS DEG 0.01 
PITCH SHIP MMS DEG 0.01 
HEAVE SHIP MMS CM 1 
HEAVE FLAG SHIP MMS BOOLEAN 1 
ACCELERATION - HORIZONTAL SHIP MMS CM/S^2 3.83 
ACCELERATION - VERTICAL SHIP MMS CM/S^2 0.0625 
REL WIND SPEED SHIP SENSOR KNOTS 0.1 
REL WIND DIRECTION SHIP SENSOR DEG 0.1 
RUDDER - 1 SHIP SENSOR DEG 0.1 
RUDDER - 2 SHIP SENSOR DEG 0.1 
VOLTAGE STANDARD NSWCCD BATTERY V 0.001 
WATER SPEED - FORE/AFT DOPPLER SPEED LOG KNOTS 0.01 
WATER SPEED - PORT/STBD DOPPLER SPEED LOG KNOTS 0.01 
WATER SPEED FLAG DOPPLER SPEED LOG BOOLEAN 1 
BOTTOM SPEED - FORE/AFT DOPPLER SPEED LOG KNOTS 0.01 
BOTTOM SPEED - PORT/STBD DOPPLER SPEED LOG KNOTS 0.01 
BOTTOM SPEED FLAG DOPPLER SPEED LOG BOOLEAN 1 
DEPTH DOPPLER SPEED LOG M 0.01 
DEPTH FLAG DOPPLER SPEED LOG BOOLEAN 1 
TIME SHIP DGPS S 0.1 
LATITUDE SHIP DGPS S 0.01 
LONGITUDE SHIP DGPS S 0.01 
HEADING SHIP DGPS DEG 0.1 
ROLL SHIP DGPS DEG 0.1 
PITCH SHIP DGPS DEG 0.1 
ATTITUDE FLAG SHIP DGPS BOOLEAN 1 
DIFFERENTIAL FLAG SHIP DGPS BOOLEAN 1 
HDOP SHIP DGPS NA 1 
TIME NA S 1 
SHAFT SPEED - 1 NSWCCD COUNTER COUNTS 1 
SHAFT SPEED - 2 NSWCCD COUNTER COUNTS 1 
SHAFT POWER - 1 CALCULATED HP 1 
SHAFT POWER - 2 CALCULATED HP 1 
FUEL CONSUMPTION - GEN 1 CALCULATED GPM 1 
FUEL CONSUMPTION - GEN 2 CALCULATED GPM 1 
FUEL CONSUMPTION - GEN 3 CALCULATED GPM 1 
FUEL CONSUMPTION - GEN 4 CALCULATED GPM 1 
FUEL CONSUMPTION - BOILER 2 CALCULATED GPM 1 
TRUE WIND SPEED CALCULATED KNOTS 1 
TRUE WIND DIRECTION CALCULATED DEG 1 
X POSITION CALCULATED YD 1 
Y POSITION CALCULATED YD 1 

Table E.1 USCGC HEALY (WAGB 20) Data Parameters [From Ref. 5].   



154

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
THIS PAGE INTENTIONALLY LEFT BLANK 

 
 



155

LIST OF REFERENCES 

1. T. I. Fossen, Guidance and Control of Ocean Vehicles, John Wiley and Sons, 
New York, 1994. 
 

2. K. J. Åström and B. Wittenmark, Adaptive Control, Addison-Wesley Publishing, 
New York, 1995. 
 

3. L. Ljung, System Identification: Theory for the User, Prentice-Hall, Englewood 
Cliffs, New Jersey, 1987. 
 

4. L. Ljung and T. Söderström, Theory and Practice of Recursive Parameter Identi-
fication, MIT Press, Cambridge, Massachusetts, 1983. 
 

5. L. Hundley, G. Brodie and S. Intolubbe, USCGC HEALY (WAGB 20) Perform-
ance and Special Sea Trials, Naval Surface Warfare Center, Carderock Division, 
1999.  
 

6. U.S. Coast Guard World Wide Web Homepage, 
http://www.uscg.mil/images/graphics/drawings/draw.html, August 2003. 
 

7. USCGC HEALY (WAGB 20) World Wide Web Homepage, 
http://www.uscg.mil/pacarea/healy/, August 2003. 
 

8. Tzeng, C., and Chen, J., “Fundamental Properties of Linear Ship Steering Dy-
namic Models,” Journal of Marine Science and Technology, Vol. 7, No. 2, pp 79–
88, 1999.  
 



156

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



157

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Stephen J. Pollard 
Naval Postgraduate School 
Monterey, California 

 
4. Roberto Cristi 

Naval Postgraduate School 
Monterey, California 

 
5. Fotis A. Papoulias 

Naval Postgraduate School 
Monterey, California 

 
6. John P. Powers 

Naval Postgraduate School 
Monterey, California 

 
7. George Brodie 

Naval Surface Warfare Center, Carderock Division 
David Taylor Model Basin 
Bethesda, Maryland 

 
8. NAVSSI Program Office 
 Marine Navigation Division (D32) 

Space and Naval Warfare Systems Center (SSC) 
San Diego, California 
 

 
 
 


